Blood Services 2017 Japanese Red Cross Society

TABLE OF CONTENTS

	History of the Blood Services in Japan	
2.	Blood Services and the Japanese Red Cross Society	10
3.	Statutes Pertaining to Blood Services	16
4.	Safety Measures for Blood	
5.	Flow of Blood Services	
6.	Promoting Blood Donations	22
7.		
8.		
9.		
10.		
11.		
12.		
13.	•	
14.	•	
15.	· · · · · · · · · · · · · · · · · · ·	
16.	·	
17.	·	
18.		
19.		
20.		
App	pendixes	
	Number of Donors	
	Total Blood Donations in Liters	
	2016 Donations by Age Groups (in percentage)	
	2016 Donations by Site (Number of donors/in percentage)	
	Blood Units that have not passed the required tests	
	Number of Distribution of Blood Products for Transfusion	
	Facilities and Personnel	64
	Blood Centers in Japan	65
	目次	
4		2
1.	血液事業の歴史	
2.	血液事業の歴史	10
2. 3.	血液事業の歴史	10 16
2. 3. 4.	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令 血液の安全対策	10 16 19
 3. 4. 5. 	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令 血液の安全対策 血液事業の流れ	10 16 19
 3. 4. 6. 	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令. 血液の安全対策 血液事業の流れ 献血推進体制	10 16 19 20
 2. 3. 4. 6. 7. 	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令. 血液の安全対策 血液事業の流れ 献血推進体制 採血業務	10 16 20 22
 3. 4. 6. 7. 8. 	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令. 血液の安全対策 血液事業の流れ 献血推進体制 採血業務 検査業務	
 3. 4. 6. 7. 8. 9. 	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令 血液の安全対策 血液事業の流れ 献血推進体制 採血業務 検査業務 製剤業務	10 16 20 32 35
2. 3. 4. 5. 6. 7. 8. 9.	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令 血液の安全対策 血液事業の流れ 耐血推進体制 採血業務 検査業務 製剤業務 供給業務	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令 血液の安全対策 血液事業の流れ 耐血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令 血液の安全対策 血液事業の流れ 耐血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務 品質管理業務	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令 血液の安全対策 血液事業の流れ 耐血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務 品質管理業務 品質管理業務	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令 血液の安全対策 血液事業の流れ 耐血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務 品質管理業務 品質保証業務 お質保証業務	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	血液事業の歴史 血液事業と日本赤十字社. 血液事業関係法令. 血液の安全対策 血液事業の流れ 耐血推進体制. 採血業務 検査業務 製剤業務 供給業務 と、要情報業務 品質管理業務 品質保証業務 の会管理業務 情報システム	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	血液事業の歴史 血液事業以係法令. 血液の安全対策 血液事業の流れ 耐血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務 品質管理業務 品質管理業務 品質保証業務 安全管理業務 情報システム 研究開発業務	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	血液事業の歴史 血液事業以上本赤十字社 血液事業関係法令 血液の安全対策 血液事業の流れ 耐血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務 品質管理業務 品質管理業務 品質保証業務 安全管理業務 情報システム 研究開発業務 造血幹細胞事業	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令 血液の安全対策 血液事業の流れ 耐血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務 品質管理業務 品質管理業務 品質管理業務 品質性悪業務 お質に主業務 お質に主業務 を全管理業務 情報システム 研究開発業務 造血幹細胞事業 他機関との協力事業	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	血液事業の歴史 血液事業関係法令。 血液の安全対策 血液事業関係法令。 血液の安全対策 血液事業の流れ 耐血推進体制 採血業務 検査業務 製剤業務 使工業務 医薬情報業務 品質管理業務 品質管理業務 品質保証業務 安全管理業務 情報システム 研究開発業務 造血幹細胞事業 他機関との協力事業 血液事業分野における国際協力事業	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令 血液の安全対策 血液事業の流れ 献血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務 品質管理業務 品質保証業務 品質保証業務 の安全管理業務 品質保証業務 品質保証業務 の安全管理業務 情報システム 研究開発業務 造血幹細胞事業 他機関との協力事業 血液事業分野における国際協力事業 血液事業の財政	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	血液事業の歴史 血液事業と日本赤十字社. 血液事業関係法令. 血液の安全対策 血液事業の流れ 耐血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務 品質管理業務 品質管理業務 品質保証業務 安全管理業務 情報システム 研究開発業務 情報システム 研究開発業務 造血幹細胞事業 他機関との協力事業 血液事業分野における国際協力事業 血液事業の財政	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	血液事業と日本赤十字社. 血液事業関係法令. 血液の安全対策 血液事業の流れ 耐血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務 品質管理業務 品質管理業務 品質保証業務 安全管理業務 情報システム 研究開発業務 情報システム 研究開発業務 造血幹細胞事業 他機関との協力事業 血液事業分野における国際協力事業 血液事業の財政 献血者数	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令 血液の安全対策 血液事業の流れ 耐血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務 品質保証業務 品質保証業務 安全管理業務 情報システム 研究開発業務 造血幹細胞事業 他機関との協力事業 血液事業分野における国際協力事業 血液事業の財政 就血者数 献血者(推計値)	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令 血液の安全対策 血液事業の流れ 耐血推進体制 採血業務 検査業務 製剤業務 (供給業務 医薬情報業務 品質管理業務 品質管理業務 品質保証業務 安全管理業務 情報システム 研究開発業務 遺血幹細胞事業 他機関との協力事業 血液事業分野における国際協力事業 血液事業分野における国際協力事業 血液事業の財政 就血者数 献血量(推計値) 2016 年 年齢別献血者数(構成比)	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	血液事業の歴史 血液事業と日本赤十字社 血液事業関係法令 血液の安全対策 血液事業の流れ 献血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務 品質管理業務 品質管理業務 品質管理業務 品質解証業務 安全管理業務 情報システム 研究開発業務 造血幹細胞事業 他機関との協力事業 血液事業分野における国際協力事業 血液事業分野における国際協力事業 血液事業の財政 献血者数 献血量(推計値) 2016 年 年齢別献血者数(構成比)	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	血液事業の歴史 血液事業以係法令 血液の安全対策 血液事業以流れ 耐血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務 品質管理業務 品質管理業務 品質保証業務 の全管理業務 品質保証業務 過四解和能事業 他機関との協力事業 血液事業分野における国際協力事業 血液事業の財政 就加者数 耐血量(推計値) 2016 年 年齢別献血者数(構成比) 2016 年 施設別献血者数(構成比) 2016 年 施設別献血者数(人数/構成比) 検査不合格本数の推移	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	血液事業の歴史 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	血液事業の歴史 血液事業以係法令 血液の安全対策 血液事業以流れ 耐血推進体制 採血業務 検査業務 製剤業務 供給業務 医薬情報業務 品質管理業務 品質管理業務 品質保証業務 の全管理業務 品質保証業務 過四解和能事業 他機関との協力事業 血液事業分野における国際協力事業 血液事業の財政 就加者数 耐血量(推計値) 2016 年 年齢別献血者数(構成比) 2016 年 施設別献血者数(構成比) 2016 年 施設別献血者数(人数/構成比) 検査不合格本数の推移	

Blood Services 2017

Japanese Red Cross Society

1. History of the Blood Services in Japan

1919 The first blood transfusion was performed in Japan.

400mL blood transfusion was reported to save the life of Prime Minister Osachi Hamaguchi after he was assaulted.

1948 A patient was infected with syphilis by the blood used for transfusion.

The Japanese Red Cross Society (JRCS) established the Blood Transfusion Control Measures Committee.

1951 Commercial and public blood banks were established.

1952 JRCS opened Tokyo Blood Bank (Hiroo, Shibuya-ku, Tokyo).

The number of voluntary blood donors dropped sharply, due to the spread of blood collection handled by commercial blood banks.

1962~69 The first step to improve the standards of blood services was launched nationwide with wide campaigns to abolish paid blood donation.

The number of blood banks in 1963 is shown below

Japanese Red Cross	16
Corporation/ Foundation	11
Public	6
Commercial (joint stock corp.)	22
Total	55

Edwin Reischauer, American ambassador to Japan at the time, was infected with serum hepatitis by a blood transfusion he received.

Following this incident, a Cabinet decision was made to establish a system to secure blood for transfusion from voluntary non-remunerated blood donation according to the official policy below.

"Regarding the promotion of blood donation" (Cabinet decision of August 21,1964)

In view of the present state of the blood program, and in order to establish a system that will secure an adequate supply of stored blood through voluntary donations as quickly as possible, the government shall work for the propagation of the concept of blood donation and the creation of blood donation systems through the national government and local authorities and, at the same time, shall promote the improvement of the receiving system for donated blood by JRCS and/or local authorities.

The distribution of blood products for transfusion, operated by commercial blood banks that collected paid blood, was finally abolished.

All commercial blood banks ceased their business by the abolishment of a blood deposit system, following the establishment of a 100% voluntary non-remunerated blood donation system.

Following the spread of blood component therapy nationwide, the distribution of blood components for transfusion soon reached a 70% share.

1982 JRCS launched a service to inform all donors of the results of biochemical tests.

The blood deposit system shifted to blood donation based on the principle of voluntary non-remunerated blood donation, deleting the section in the 'donation passbook' saying that "Blood donors and their family have the right to receive blood transfusions."

The HIV-tainted-blood scandal occurred. Untreated blood coagulation factor products derived from paid blood donations in the USA were contaminated with HIV. About 2,000 patients (accounting for 40% of hemophilia patients) treated with the blood products were infected with HIV mainly from 1982 to 1985.

1. 血液事業の歴史

1919年(大正8年) 日本で初めての輸血が行われる。

1930年(昭和5年) 暴漢に狙撃された浜口雄幸首相の一命を輸血(400mL)が取り留める。

1948年(昭和23年) 輸血による梅毒感染事故が起きる。

1949年(昭和24年) 日本赤十字社に輸血対策委員会が設置される。

1951年(昭和26年) 民間商業血液銀行及び公的血液銀行が業務を開始する。

1952年(昭和27年) 日本赤十字社血液銀行東京業務所(東京都渋谷区広尾)が開設される。

1955年(昭和30年) 民間商業血液銀行による売血が盛んになり、献血者が激減する。

1962年(昭和37年)~1969年(昭和44年)

売血追放キャンペーンが続き、血液事業改善への第一歩が始まる。

1963年当時の血液事業の状況

赤十字	16
社団·財団	11
公立	6
営利(株式会社)	22
血液銀行の数	合計:55

1964年(昭和39年)

ライシャワー事件 (エドウィン・ライシャワー駐日アメリカ大使が暴漢に襲われ、輸血による血清肝炎に感染する事件) が起こる。

輸血用血液は献血により確保する体制を確立するよう閣議決定がなされ、「献血の推進について」の政府方針が決定される。

「献血の推進について」(1964年(昭和39年)8月21日、閣議決定)

政府は、血液事業の現状に鑑み可及的速やかに保存血液を献血により確保する体制を確立するため、国及び地方公共団体による献血思想の普及と献血の組織化を図るとともに日本赤十字社又は地方公共団体による献血受入体制の整備を推進するものとする。

1969年(昭和44年) 民間商業血液銀行で行われていた売血による輸血用血液製剤の供給が中止される。

1974年(昭和 49年) 民間商業血液銀行が預血制度を廃止したことにより、献血 100%の体制が確立する。

1980年(昭和55年) 成分輸血療法が全国的に普及したことにより、各種成分に分けられた輸血用血液製剤が全供給本数の70%以上となり、飛躍的な増加を示す。

1982年(昭和57年) 献血者全員に対する生化学検査結果の通知を開始する。

献血手帳の供給欄が削除され、「血液無償の原則」に基づく純粋な献血制度に転換する。

薬害エイズ事件が起こる。アメリカの売血血液を原料に製造された非加熱血液凝固因子製剤に HIV ウイルスが混入していたことにより、主に 1982年(昭和57年)から 1985年(昭和60年) にかけて、これを治療に使った血友病患者の4割にあたる約2,000人が HIV ウイルスに感染した。

1983	The Japanese Red Cross Plasma Fractionation Center was built in Chitose, Hokkaido.
1986	In addition to 200mL donation, both 400mL and apheresis donations were introduced.
	JRCS started to conduct Anti-HIV-1 and Anti-HTLV-1 tests for all donated blood.
1988	The National Diet passed a resolution for the "early relief for patients infected with HIV-contaminated blood products." This led to increased demand for domestic self-sufficiency of donated blood especially for blood coagulation factor products for hemophilia patients.
1989	Japan was the first country in the world to institute Anti-HCV tests for all donated blood nationwide successfully.
	JRCS started to implement Anti-HBc tests, followed by the introduction of HBsAg tests.
1990	All the functions regarding blood collection are unified to JRCS for the safe production of blood products including plasma derivatives, followed by the cease of plasma collection by private pharmaceutical manufactures.
1992	The supply of blood coagulation factor VIII product by donated blood was started.
1993	With requests from medical institutions, JRCS cooperates with autologous transfusion and washed platelet transfusion.
1994	Anti-HIV-1/2 tests started.
	The First Stage Unified System for Blood Service Data was introduced.
	Domestic self-sufficiency of blood coagulation factor VIII products (excluding recombinant products) was achieved with voluntary non-remunerated blood donation.
1996	Blood samples of all donations started to be put in storage (for 10 years) for the look-back studies of infectious diseases.
1998	Supply of irradiated blood for transfusion was started to prevent post-transfusion GVHD.
1999	JRCS also started a new service to inform the result to those who want it, in the case the Anti-HTLV-1 test shows positive.
	In April, the approved upper age limit of donors was revised from 64 to 69.
	In July, NAT testing was introduced on a trial basis to eliminate HBV, HCV, and HIV from donated blood.
	In October, JRCS launched NAT testing of HBV, HCV, and HIV against donated blood for all blood donation, with the pool of 500 samples prior to similar testing by other nations.
2000	In February, the pool size of the NAT was reduced from 500 to 50 samples.
	In April, JRCS established the Japanese Red Cross Fukuchiyama Center in Kyoto, implementing an inventory storage of source plasma (300,000 liters) and NAT testing.

1983年(昭和58年)	日本赤十字社血漿分画センター(北海道千歳市)を設立する。
1986年(昭和61年)	400mL 献血、成分献血方式が導入される。
	HIV-1 及び HTLV-1 抗体検査を開始する。
1988年(昭和63年)	国会において「血液製剤によるエイズウイルス感染者の早期救済について」が決議され、特に血 友病患者が使用する血液凝固因子製剤について、献血血液による国内自給が望まれるようになった。
1989年(平成元年)	世界に先駆けて、HCV 抗体検査を開始する。
	HBs 抗原検査に加えて、HBc 抗体検査を開始する。
1990年(平成2年)	民間製薬業者による国内での有償採漿が中止され、血液製剤製造目的の採血が日本赤十字社に一 元化される。
1992年(平成4年)	献血による血液凝固第 VIII 因子製剤の供給を開始する。
1993年 (平成5年)	医療機関の要請に応じた自己血輸血及び洗浄血小板輸血に対する協力を開始する。
1994年 (平成6年)	HIV-1/2 抗体検査を開始する。
	第一次血液事業統一システムの運用を開始する。
	血液凝固第VII因子製剤(遺伝子組換え製剤を除く)の献血血液による国内自給を達成した。
1996年 (平成8年)	感染症等の遡及調査のために全献血者からの検体保管を開始(保存期間 10 年)する。
1998年(平成 10年)	輸血後 GVHD(移植片対宿主病)予防のため、放射線照射輸血用血液製剤の供給を開始する。
1999年(平成11年)	HTLV-1 抗体検査の異常を認めた場合、通知を希望される方への通知を開始する。
	4月、献血可能年齢の上限の基準が 64 歳から 69 歳に改定される。
	7月、献血血液に対する NAT を一部地域から試験的に導入を開始する(HBV、HCV、HIV)。
	10月、世界に先駆けて全献血血液への NAT を、プールサイズ 500 で全面的に開始する(HBV、HCV、HIV)。
2000年 (平成 12年)	2月、NAT プールサイズを 500 プールから 50 プールに減少させる。
	4月、日本赤十字社血液管理センター(京都府福知山市)を設立する(30万Lの原料血漿の貯留保管と NAT 検査を実施)。

2002 In March, a National Conference for Promoting Blood Donation was held.

On 25 July, the National Diet approved and promulgated the Law on Securing Stable Supply of Safe Blood Production and the Revised Pharmaceutical Affairs Law.

In August, provisions prohibiting the collection of blood for payment and setting penalties for doing so went into effect.

Blood Services in Japan also celebrated its 50th anniversary from the initial establishment of the Japanese Red Cross Central Blood Center.

2003 In July, the Law on Securing a Stable Supply of Safe Blood Products came into effect.

2004 In June, the Second Stage Unified System for Blood Service Data was introduced.

In August, the pool size of NAT was reduced to 20 samples.

In October, JRCS Blood Services Department was reorganized so as to incorporate the Central Blood Center. The Blood Service Headquarters began operating under its new name.

In October, donor identification at a reception was started nationwide.

In April, the Revised Pharmaceutical Affairs Law validated the marketing authorization for pharmaceutical products to JRCS.

In July, JRCS launched its supplies of fresh-frozen plasma of over 6-month storage, halting the extension of its storage period started in January 2004.

2006 In October, JRCS started a relief system for adverse events on blood donor's health.

In October, JRCS introduced diversion pouch for the initially drawn blood for platelets apheresis.

In October, JRCS set up the Repeat Donor Club.

Also in October, electronic donation cards were introduced for donors.

In January, JRCS introduced pre-storage leukocyte reduction and, in March, the diversion pouch for the initially drawn blood for whole blood collection.

In November, JRCS prolonged the shelf life of platelets from 72 hours to 4 days after collection.

2008 In January, JRCS Kyushu Blood Center was established.

In January, the diversion pouch for the initially drawn blood was introduced for plasma apheresis.

In May, JRCS completed the introduction of testing equipment using the chemiluminescence enzyme immunoassay (CLEIA), discontinuing infection testing by the agglutination method.

In December, NAT was started at Kyushu Blood Center.

In March, JRCS added a test for glycoalbumin related to Diabetes Mellitus to the biochemical tests services.

In January, as the safety measures related to variant Creutzfeldt-Jakob disease (vCJD) were reviewed, legal restrictions on blood donation were changed and people who spent up to 30 days in the UK between 1980 and 1996 are allowed to donate blood.

In December, donors of 200mL whole blood donation also started to be informed of their hematological testing results.

2002年(平成14年) 3月、献血推進全国協議会が発足する。

7月25日、国会において「安全な血液製剤の安定供給の確保等に関する法律」及び改正薬事法が成立し、公布される。

8月、有料での採血等を禁止する部分及びその罰則にかかる部分が施行される。

日本赤十字社の血液事業が、50周年を迎える。

2003年(平成15年) 7月、「安全な血液製剤の安定供給の確保等に関する法律」が施行される。

2004年(平成16年) 6月、第二次血液事業統一システムの運用を開始する。

8月、NAT プールサイズを 20 プールに減少させる。

10月、日本赤十字社血液事業部を改組(中央血液センターを統合)し、血液事業本部が発足する。

10月、献血受入時の本人確認を全国で開始する。

2005年(平成17年) 4月、改正された薬事法が完全施行され、日本赤十字社は医薬品製造販売業の許可を取得する。

7月、6ヵ月間貯留保管した新鮮凍結血漿の供給を開始する(2004年(平成 16年)1月から開始された新鮮凍結血漿の貯留期間の延長が完了)。

2006年(平成18年) 10月、献血者健康被害救済制度を開始する。

10月、血小板製剤の初流血除去を開始する。

10月、複数回献血クラブを設置する。

10月、献血カードを導入する。

2007年(平成19年) 1月、全血由来製剤の保存前白血球除去を開始し、3月に初流血除去を開始する。

11月、血小板製剤の有効期間が採血後72時間から採血後4日間に変更される。

2008年(平成20年) 1月、日本赤十字社九州血液センターを開設する。

1月、血漿製剤の初流血除去を開始する。

5月、化学発光酵素免疫法(CLEIA 法)検査機器の導入を完了し、凝集法による感染症検査を終了する。

12月、九州血液センターにて NAT を開始する。

2009年(平成21年) 3月、生化学検査に糖尿病関連のグリコアルブミン検査が追加される。

2010年(平成22年) 1月、変異型クロイツフェルト・ヤコブ病(vCJD)対策の献血制限は、輸血用血液製剤の安全性や安定供給等に及ぼす影響を検討した結果、1980年(昭和55年)から1996年(平成8年)

の間の英国滞在歴が通算30日までの方の献血を可能として緩和した。

12月、200mL 全血献血者の方にも、血球計数検査結果の通知を開始する。

- On April 1, some blood donation standards were revised. For males, the minimum age for 400mL whole blood donation was lowered from 18 to 17, and the maximum age for platelet component donation was raised from 54 to 69. The revised questionnaires ask donors to provide more detailed information on medical history, adding 9 more questions.
- On April 1, JRCS launched a 'Wide-area Management System', dividing the nation into seven blocks with each block blood center under JRCS HQs direct control.

On June 1, a new general incorporated association, the Japan Blood Products Organization (JB), was established with the aim of increasing the safety and reliability of plasma derivatives and achieving domestic self-sufficiency of plasma derivatives with donated blood.

In August, the anti-HBc criteria was revised to be more stringent.

On October 1, the Plasma Fractionation Center was closed, and the plasma fractionation services were transferred to JB.

- On October 1, JRCS was designated as the only "Hematopoietic Stem Cell Provision Support Organization" in the country, in the "Act for Appropriate Provision of Hematopoietic Stem Cells to be used in Transplantations."
- On April 1, JRCS obtained permission to supply cord blood by the Minister of Health, Labour and Welfare.

 In June, the Information System for Blood Service Data was introduced.

 In August, Individual NAT was started.
- 2015 On March 31, JRCS ended the supply of plasma derivatives.
- 2016 From September 13, JRCS started to supply washed platelet products and stopped technical cooperation of preparation of washed platelets to medical institutions.

2011年(平成 23年) 4月1日から採血基準が一部改正され、男性に限り 400mL 全血献血が可能な方の年齢の下限を 18歳から 17歳に引き下げるとともに、男性に限り血小板成分献血が可能な方の年齢の上限を 54歳から 69歳に引き上げる。

また、問診票の質問事項を 14 項目から 23 項目に改訂する。

2012 年(平成 24 年) 4 月 1 日、全国を 7 つのブロックに分け、各ブロックに本社直轄施設であるブロック血液センターを設置して広域事業運営体制を開始する。

6月1日、血漿分画製剤の安全性と信頼性の向上と献血血液による国内自給達成を目指し「一般 社団法人日本血液製剤機構」が発足する。

8月、HBc 抗体の判定基準が改正される。

10月1日、日本赤十字社血漿分画センターを廃止し、血漿分画事業を一般社団法人日本血液製剤機構に移管する。

2013 年(平成 25 年) 10 月 1 日、「移植に用いる造血幹細胞の適切な提供の推進に関する法律」における全国唯一の「造血幹細胞提供支援機関」として指定される。

2014年(平成26年) 4月1日、厚生労働大臣から臍帯血供給事業の許可を受ける。

6月、血液事業情報システムの運用を開始する。

8月、個別 NAT(献血者 1 人分の血液ごとに調べる検査)に切り替える。

2015年(平成27年) 3月31日、日本赤十字社による血漿分画製剤の販売が終了。

2016 年(平成 28 年) 9月13日から洗浄血小板製剤の供給を開始した。これにより、医療機関の要請に応じた洗浄血 小板調製への技術協力を中止。

2. Blood Services and the Japanese Red Cross Society

2.1 History and Background of Blood Services in Japan

The Japanese Red Cross Society (JRCS) was founded on May 1, 1877. In 1952, it became an incorporated entity, in keeping with the provisions of the Japanese Red Cross Society Law. JRCS is supported by members who contribute a certain sum of money each year and also by volunteers who carry out a variety of activities. JRCS provides assistance to victims of natural disasters, international activities, medical services and the training of nurses. The provision of blood services is one of its many medical activities.

In Japan, blood transfusions became widely known when, in 1930, a blood transfusion saved the life of Japan's Prime Minister, who had been assaulted at Tokyo Station. Afterwards, medical care making use of blood transfusions gradually became more widely practiced and at first, blood for transfusions was acquired mainly by purchasing it from donors.

In the years immediately after the Second World War, most fresh blood procured for blood transfusions was acquired on an ad hoc basis and this occasioned a number of accidents. A particularly serious incident occurred in November 1948 at Koishikawa Clinic attached to Tokyo University Hospital when a transfusion patient became infected with syphilis. In response to the incident, the General Headquarters (GHQ) of the Allied Occupation Forces suggested the establishment of blood banks to the Ministry of Health and Welfare and to Tokyo municipal government.

As a result, in May 1949, representatives of the Ministry of Health and Welfare, the Japanese Medical Association and JRCS held a preliminary roundtable conference to discuss blood transfusion policies and technical measures. JRCS began blood service activities in keeping with the conference policy.

In April 1952, JRCS opened Tokyo Blood Bank in Hiroo, Shibuya-ku, Tokyo and disseminated blood donations.

2. 血液事業と日本赤十字社

2.1 日本における血液事業の経緯と背景

日本赤十字社は 1877年(明治 10年)5月1日に設立され、1952年(昭和 27年)の日本赤十字社法に基づいて設置された法人である。日本赤十字社は、毎年一定の資金を納める社員及び様々な活動を展開するボランティアによって支えられ、災害救護、国際活動、医療事業、看護師養成等の事業を行っており、血液事業はそのうちのひとつである。

日本で輸血が一般に知られるようになったのは、1930年(昭和5年)、東京駅において当時の首相が暴漢に襲撃され輸血により一命を取り止めてからである。その後、輸血医療が次第に行われるようになったが、輸血に用いられる血液の大部分は買血により賄われていた。

戦後、その場で採血した新鮮な血液をほぼそのまま輸血(枕元輸血・生血輸血) したため、数多くの輸血事故が発生した。特に1948年(昭和23年)11月、東京大学医学部附属病院小石川分院において梅毒感染事故がおこり、それがきっかけとなり連合軍総司令部(GHQ)から厚生省と東京都に対して血液銀行を設置するようにとの助言があった。

これを受けて1949年(昭和24年)5月に厚生省、日本医師会及び日本赤十字社の代表などが集まり、日本における輸血対策を検討するための輸血問題予備懇談会を開催し、その方針により日本赤十字社が血液事業に取り組むこととなった。

日本赤十字社では、1952年(昭和27年)4月に、東京都渋谷区広尾に血液銀行東京業務所を開設し、その後も、受入れ施設を整備するとともに献血の周知、普及に努めてきた。

Following a 1964 Cabinet decision on the promotion of blood donations, the central government, local public entities and JRCS all came together to promote blood donations as a national endeavor. As a result, blood donations showed steady annual growth, based on the nation's understanding and cooperation among the various organizations concerned with blood services. In 1969, the supply of stored blood that had originally been purchased from commercial blood banks was discontinued and in 1974, the commercial blood bank replacement blood system was also discontinued. The result was that all blood products for transfusion were provided by voluntary non-remunerated blood donations. In 1983, all public blood centers, including those operated by local governments, were put under the management of JRCS, thus fully establishing JRCS blood-collection system. In 1990, plasma collection for payment by certain private pharmaceutical companies, for the purpose of manufacturing plasma derivatives, was ended. This meant that henceforth JRCS carried out the collection of all blood for all blood products, including plasma derivatives. Keeping pace with medical progress, efforts were then made to expand the scope of JRCS's blood services by improving blood examinations, introducing 400mL and apheresis donations and nucleic acid amplification testing (NAT) for donated blood to ensure high safety for blood products for transfusion.

Today the donation of blood in Japan has taken firm root as an indispensable part of the nation's medical and health system with the support and cooperation of an enormous number of people. Blood donating in Japan has reached a world–class level in the ratio of donors to population and technological capability.

さらに、1964年(昭和39年)の「献血の推進について」 の閣議決定以来、国家的事業として国、地方公共団体及び日 本赤十字社の三者が一体となって献血を推進した結果、国民 の理解と血液事業関係諸機関の協力を得て献血は毎年着実に 進展し、1969年(昭和44年)には民間商業血液銀行で 行われていた買血による保存血液の供給が姿を消し、1974 年(昭和49年)には民間商業血液銀行が預血の受入れも中 止し、これに伴い輸血用血液製剤は全て献血により賄われる こととなった。また、一部の地方公共団体が行っていた公立 血液センターも 1983年(昭和58年)には全て日本赤十 字社に移管され、赤十字による献血の受入れ体制が確立され た。なお、1990年(平成2年)には、血漿分画製剤を製 造するために一部の民間製薬業者が行っていた有償採漿につ いても中止され、これに伴い血漿分画製剤を含む全ての血液 製剤の製造を目的とする採血は日本赤十字社が実施すること となった。輸血用血液製剤の高い安全性を確保するための検 査内容の充実、400mL 献血、成分献血及び献血血液に対す る核酸増幅検査(NAT)の導入など医学の進歩に伴った事 業内容の拡充に努めてきた。

今日、献血は多くの人々の支援と協力のもと国民医療に欠くことのできない事業として定着しており、人口と比較した 献血者数及び技術的にも世界有数の水準に達している。

2.2 The Management and Contents of Blood Services

Through humanitarian goodwill and the understanding of the public, JRCS receives voluntarily donated blood. After ensuring that the blood is safe, JRCS prepares blood products for transfusion and supplies them to medical institutions, thereby contributing to the nation's medical services. These blood services require effective and appropriate management and control.

In April 2012, JRCS launched the 'Wide Area Management System,' dividing the nation into seven blocks, each with a block blood center under JRCS HQs direct control. This system adjusts the balance between demand and supply, improves testing, preparation, management and planning of supply and demand at/ within each block nationwide.

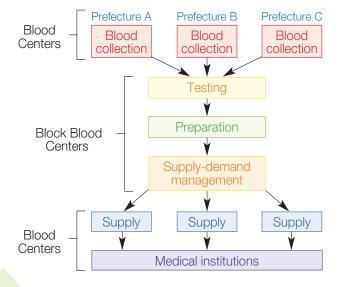
JRCS has secured both improved safety and a stable supply of blood products, and is establishing a smooth and sustainable management system nationwide on which citizens can rely.

The principal items in the operation of JRCS blood services are as follows:

- Promoting blood donations based on blood donation acceptance plans;
- 2) Recruitment and registration of blood donors and collecting blood donations;
- Various types of testing to increase the safety of transfusions;
- 4) Preparation of blood products for transfusion;
- 5) Distribution of blood products for transfusion to medical institutions;
- 6) Blood-related studies, research and technological development;
- 7) Consultations about blood and blood donations;
- 8) Manufacturing of test-use reagents;
- Cooperation with medical institutions in connection with the storage and supervision of autologous transfusions;
- 10) Hematopoietic stem cell transplantation (a roll of hematopoietic stem cell provision support organization, bone marrow data center and cord blood banks)
- * The plasma fractionation activities were transferred to JB as of October 1, 2012.

2.2 血液事業の運営・事業内容

人々の人道的な善意と理解によって、無償で安全性の高い 血液の提供を受け、輸血用血液製剤として調製し、これを医 療機関へ供給して国民医療に貢献することを目的とした業務 を行っているが、その運営にあたっては、事業の効率的かつ 適正な運営管理が要請されている。


2012年(平成24年)4月より、全国を7つのブロックに分け、各ブロックに本社直轄施設であるブロック血液センターを設置して広域事業運営体制をスタートさせた。この体制下においては、各都道府県の枠を越えて、ブロック単位で広域的に血液の需要と供給のバランスを調整し、ブロック内の検査・製剤、需給管理及び企画・管理業務を行うこととした。

これにより、日本赤十字社は血液製剤のさらなる「安全性の向上」と「安定供給」を将来にわたって確保し、国民に信頼される効率的で持続可能な事業運営体制の確立を目指すこととした。

主な業務は、以下のとおりである。

- 1) 献血受入計画に基づく献血受入れの推進
- 2) 献血者、献血登録者の募集と受入れ(採血)
- 3) 輸血の安全性を高めるための諸検査
- 4) 輸血用血液製剤の調製
- 5) 輸血用血液製剤の医療機関への供給
- 6) 血液に関する調査研究及び技術の開発
- 7) 献血及び血液に関する相談
- 8) 検査用試薬の製造
- 9) 自己血輸血の保管管理に対する医療機関への協力等
- 10) 造血幹細胞事業(造血幹細胞提供支援機関、骨髄データセンター及び臍帯血バンク)

※血漿分画事業は、2012年(平成24年)10月1日をもって一般社団法人日本血液製剤機構に移管した。

2.3 Organization of Blood Services

On July 30, 2003, the Law on Securing a Stable Supply of Safe Blood Products came into effect, aiming at a stable supply of products, with the basic principle of achieving domestic self-sufficiency. With the revised Pharmaceutical Affairs Law coming into full effect in April 2005, a new organization called the Blood Service Headquarters, which was set up in keeping with the provisions of these laws and regulations, was inaugurated in October 2004. (For more details on the relevant legal framework, see Section 3: Statutes Pertaining to Blood Services.)

To implement the envisaged tasks, the Blood Service Headquarters was established in Tokyo and the Blood Service Board of Management was instituted under the control of its Executive Officer. As of April 1, 2017, there were 18 working divisions, with the following names: (1) Wide-area Management Development Office; (2) Management and Planning; (3) Finance; (4) Supplies and Property; (5) Blood Donation Promotion; (6) Supply Management; (7) Medical Information; (8) Safety Vigilance; (9) Quality Assurance; (10) Regulatory Affairs; (11) Development Management; (12) 1st Information System; (13) 2nd Information System; (14) Laboratory Management; (15) Manufacturing Management; (16) Medical Affairs and Blood Collection; (17) Hematopoietic stem cell general management; (18) Hematopoietic stem cell practice control. In addition, the Central Blood Institute was established, which within the organizational framework of the headquarters, carries out blood research and development, quality inspection, analysis of infections and so forth. The National Headquarters of JRCS has seven block blood centers under its direct jurisdiction.

JRCS has a chapter in each of Japan's 47 prefectures. Each chapter supervises regional blood centers within its area of jurisdiction.

2.3 血液事業の組織

2003年(平成15年)7月30日に「国内自給の確保」を基本理念とした「安全な血液製剤の安定供給の確保等に関する法律」が施行され、また、2005年(平成17年)4月には改正薬事法が完全施行されたことに伴い、これらの法令等に対応した新たな組織として「血液事業本部」が、2004年(平成16年)10月に発足した。(関連法に関して詳しくは「3.血液事業関係法令」参照)

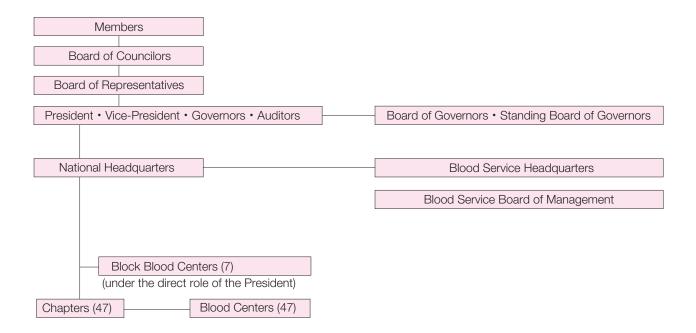
東京の本社血液事業本部には、血液事業本部長の下に血液 事業経営会議を置き、2017年(平成29年)4月1日現 在、(1)広域事業運営推進室、(2)経営企画課、(3)財務 課、(4)用度課、(5)献血推進課、(6)供給管理課、(7) 学術情報課、(8)安全管理課、(9)品質保証課、(10)薬 事課、(11)臨床開発課、(12)システム一課、(13)システム二課、(14)検査管理課、(15)製造管理課、(16)医 務採血課、(17)造血幹細胞管理課、(18)造血幹細胞業務 課の18部門を配置している。また、本部組織内に血液研究 開発、品質検査、感染症の解析等を行う中央血液研究所を設 置している。また、本社は、全国7つのブロック血液センター を直接管轄している。

なお、日本赤十字社の支部は各都道府県に 1 つずつ合計 47 設置されており、47 支部は支部管内の血液センターを 管轄している。

Wide-area Management System

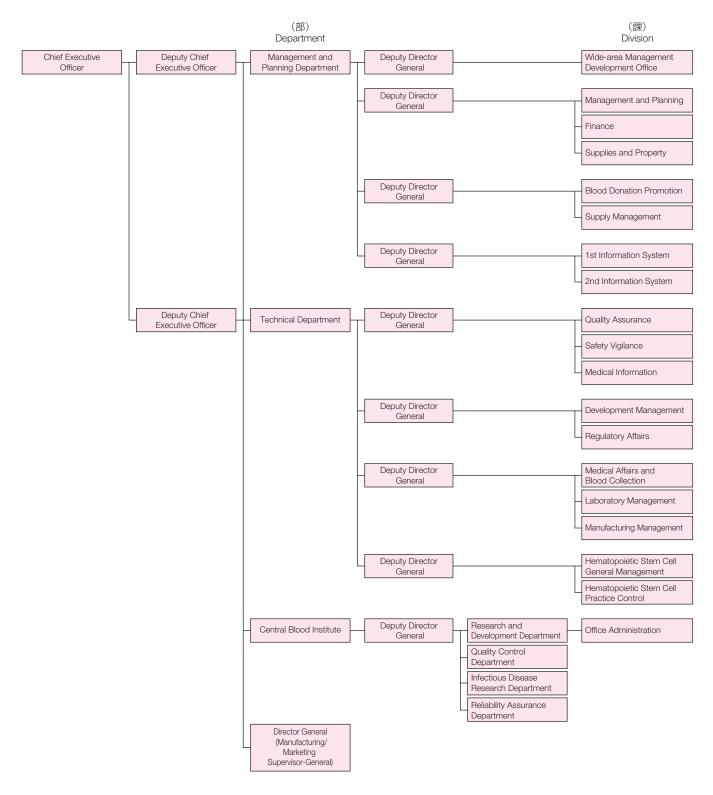
National Headquarters of JRCS (Blood Service Headquarters)

[Supervising the management of all services]


Block Blood Centers

[Blood centers established at seven locations nationwide and directly controlled by the national headquarters; comprehensively coordinating the testing and preparation operations as well as supply-demand management, etc.]

Blood Centers


[Blood centers established in each of the 47 prefectures nationwide and supervised by each prefectural chapter of JRCS; belong to the respective block blood centers, and specialize in promoting blood donations, collecting blood, and supplying products]

Governance Structure for Blood Services

(as of March, 2017)

Blood Service Headquarters, JRCS

(as of April 2017)

3. Statutes Pertaining to Blood Services

3.1 Law on Securing a Stable Supply of Safe Blood Products (Blood Law)

The Law on Securing a Stable Supply of Safe Blood Products (Blood Law) came into effect on July 30, 2003. This law provides the following principles for guiding the management of the blood program and clarifies the responsibilities of those involved in the program.

<Principles>

- 1) To improve the safety of blood products.
- To secure a domestic supply of blood products (blood products manufactured from blood donated in Japan as a raw material) and to maintain a stable supply of blood products.
- 3) To promote the proper use of blood products.
- 4) To ensure fairness and improve transparency in managing the blood program.

<Responsibilities of those involved in the blood program> Responsibilities are based on the following principles:

- The national government is responsible for planning and implementing basic and general measures for improving the safety of blood products and securing a stable supply, providing Japanese citizens with education and enlightenment to enhance their understanding and cooperation regarding blood donation to secure a domestic supply of blood products and planning and implementing measures for promoting the proper use of blood products, and taking other necessary measures.
- 2) Local authorities (prefectural and municipal governments) are responsible for enhancing local resident understanding of blood donating and for taking necessary measures to assist the blood collecting service entity in receiving donated blood.
- 3) The blood-collecting service entity is responsible for promoting and receiving blood donations, improving the safety of blood products, cooperating in securing a stable supply and protecting blood donors.
- 4) Marketing authorization holders, manufacturers and sales contractors are responsible for ensuring a stable and appropriate supply of safe blood products, for carrying out technological development and for collecting/providing information to improve safety.
- 5) Medical professionals are responsible for using blood products properly and collecting/providing information on the safety of blood products.

The Japanese Red Cross Society (JRCS) carries out its duties as a blood collecting service entity, a marketing authorization holder, a manufacturer and a sales contractor.

3. 血液事業関係法令

3.1 安全な血液製剤の安定供給の確保等に関する法律(血液法)

2003年(平成15年)7月30日「安全な血液製剤の 安定供給の確保等に関する法律」が施行された。この法律では、血液事業の運営指針となる以下の基本理念が設けられ、 血液事業に携わる関係者の責務が明確化された。

〈基本理念〉

- 1) 血液製剤の安全性の向上
- 2) 血液製剤の国内自給(国内で行われる献血により得られた血液を原料として製造されること)の確保及び安定供給
- 3) 血液製剤の適正使用の推進
- 4) 血液事業運営にかかる公正の確保及び透明性の向上 〈血液事業関係者の責務〉基本理念にのっとり、
- 1) 国:血液製剤の安全性向上並びに安定供給の確保に関する基本的・総合的施策の策定及び実施、血液製剤の 国内自給が確保されるように献血に関する国民の理解 及び協力を得るための教育・啓発、血液製剤の適正使 用推進に関する施策の策定・実施、その他の必要な措 置を講じるよう努める。
- 2) 地方公共団体(都道府県及び市町村): 献血について住民の理解を深めること、採血事業者による献血の受入れを円滑に実施するため必要な措置を講じる。
- 3) 採血事業者:献血受入れの推進、血液製剤の安全性の 向上、安定供給の確保への協力、献血者等の保護に努 める。
- 4) 製造販売業者、製造業者及び販売業者:安全な血液製 剤の安定的・適切な供給並びにその安全性向上のため の技術開発と情報収集及び提供に努める。
- 5) 医療関係者:血液製剤の適正使用、血液製剤の安全性 に関する情報収集及び提供に努める。

上記のうち日本赤十字社は、採血事業者、製造販売業者、 製造業者及び販売業者として課された責務を果たしている。 To redress identifiable health hazards due to blood products and blood collection, a clause in the law's supplement states that the national government will immediately examine such cases and take necessary action, such as establishing a legal framework. In April 2004, a system was implemented to aid blood recipients who develop health problems due to blood transfusions. In addition, a relief system for adverse events to blood donor's health was implemented in October 2006.

また、血液製剤による健康被害及び採血により献血者に生じた健康被害の救済のあり方について、「政府は、速やかに、検討を加え、その結果について法制の整備その他の必要な措置を講ずるものとする。」と付則に定められ、受血者の健康被害に対する救済制度は、2004年(平成16年)4月に発足し、また、献血者健康被害救済制度は2006年(平成18年)10月に実施された。

3.2 Act on Securing Quality, Efficacy and Safety of Pharmaceuticals, Medical Devices, Regenerative and Cellular Therapy Products, Gene Therapy Products, and Cosmetics (PMD Act)

As a result of legal revision enacted in April 2005, there were considerable changes in "the appropriate division of responsibilities in the manufacture and sale of pharmaceutical products." Accordingly, a system that mandates marketing authorization holders shipping pharmaceuticals to the market to be responsible for various types of safety and other problems that may arise following the market release was established.

It is mandatory for marketing authorization holders of pharmaceutical products to organize a Quality Assurance Department for managing the market release of products, as well as a Safety Vigilance Department for formulating safety measures by collecting post-marketing information. These departments have been established in the Blood Service Headquarters of JRCS.

In November 2014, legal revision was enacted to reinforce safety measurements for pharmaceutical products, etc. and establish regulations in consideration of the characteristics of medical devices and products for regenerative medicine and so forth. Accordingly, the "Pharmaceutical Affairs Law" was renamed as the "Act on Securing Quality, Efficacy and Safety of Pharmaceuticals, Medical Devices, Regenerative and Cellular Therapy Products, Gene Therapy Products, and Cosmetics (PMD Act)."

As a result of this revision, as in the case of the Blood Law, the responsibilities of concerned parties have been clearly specified. JRCS, as a marketing authorization holder, manufacturer, and sales contractor, has been obliged to be responsible for securing the quality, efficacy, and safety of pharmaceutical products, etc. by taking necessary actions and preventing the occurrence and expansion of health and hygiene hazards due to the use of pharmaceutical products, etc.

3.2 医薬品、医療機器等の品質、有効性及び安 全性の確保等に関する法律(医薬品医療機 器等法)

2005年(平成17年)4月に施行された法改正で、「医薬品を製造し販売する上での責任の在り方」に関する考え方が大きく変更され、医薬品を市場へ出荷する製造販売元が製造し販売後に発生する様々な安全性等の問題についても責任を負うという制度が導入された。

医薬品の製造販売業者は、医薬品の市場への出荷を管理する品質保証部門、及び販売後の安全性情報を収集して安全対策を立案する安全管理統括部門を設置することが義務付けられたことから、これらの部門を日本赤十字社本社に設置した。

2014年(平成26年)11月、医薬品等の安全対策の強化と医療機器や再生医療等製品の特性を踏まえた規制の構築のための法改正が行われ、法律名が「薬事法」から「医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律(医薬品医療機器等法)」に改められた。

本改正では、血液法と同様に、関係者の責務が明確化された。日本赤十字社は製造販売業者、製造業者及び販売業者として、必要な措置を講ずることによる医薬品等の品質、有効性及び安全性の確保、医薬品等の使用による保健衛生上の危害の発生及び拡大の防止等の責務が課せられた。

3.3 Operations at Each Facility and Statutory Permissions

JRCS manufactures blood and blood components for transfusion from donated blood and supplies them to medical institutions under the strict regulations of applicable laws. Also, JRCS distributes source plasma for plasma derivatives to the three domestic plasma fractionators.

JRCS is licensed by the government under the Blood Law to collect blood and is the only entity in Japan that collects donated blood.

All blood products for transfusion and source plasma are produced at the 12 JRCS blood centers that have obtained a license as a pharmaceutical manufacturer under the PMD Act. Blood products for transfusion are sold by JRCS blood centers and facilities attached thereto in Japan by obtaining a license as a pharmaceutical wholesaler under the PMD Act.

In addition, the Blood Service Headquarters of JRCS has received approval for manufacturing and marketing in accordance with the PMD Act and is responsible for blood products for transfusion after the market release.

Plasma derivatives, namely freeze-dried human blood coagulation factor VIII concentrates, human serum albumin, and human immunoglobulin products, are manufactured and marketed at the three plasma derivative manufacturers in Japan.

3.3 各施設の業務と法令に基づく許可

日本赤十字社は、関係法令の厳密な規制の下、献血者から 採血した血液から輸血用血液製剤を製造し医療機関へ供給し ている。また、血漿分画製剤の原料血漿を国内血漿分画製造 3社へ送付している。

日本赤十字社は血液法に基づく採血業の許可を受け国内で唯一献血の受入れを行っている。

全ての輸血用血液製剤と原料血漿は、医薬品医療機器等法に基づく医薬品製造業の許可を受けた12の血液センターで製造され、輸血用血液製剤の販売については、全国の血液センターとその附属施設で、医薬品医療機器等法に基づく医薬品の卸売販売業許可を受けて実施している。

また、日本赤十字社本社は、医薬品医療機器等法に基づく 製造販売業許可を受けて、輸血用血液製剤の製造販売後の責 任を負っている。

なお、乾燥濃縮人血液凝固第 VIII 因子、人血清アルブミン及び人免疫グロブリン製剤等の血漿分画製剤については、国内血漿分画製剤製造3社で製造及び製造販売している。

4. Safety Measures for Blood

The Japanese Red Cross Society (JRCS) has been implementing possible safety measures for blood and blood components for transfusion that are provided to medical institutions. Main Safety Measures

1) Donor Identification

For safe and responsible blood donation, identification of a donor is required at the time of blood donation.

2) Donor Interviews

Based on a questionnaire, which is filled out beforehand, an expert physician confirms the donor's health status.

3) Test of transfusion-transmissible agents

At the eight facilities across the country, serological tests are carried out to detect major transfusion-transmissible pathogens. Since 1999, the nationwide Nucleic acid Amplification Test (NAT) has been implemented to screen for HBV, HCV and HIV. NAT is a method that amplifies viral DNA or RNA 100 millionfold to detect the virus with high sensitivity. NAT was installed as a 500 pool NAT, that is, 500 samples were gathered in one test sample, then the pool size was reduced from 500 to 50, 50 to 20, and finally individual (ID) NAT was introduced in August 2014.

4) Inventory Hold

Since August 2005, fresh frozen plasma (FFP) has been held in inventory for a period of six months and supplied to medical institutions following the removal of FFP that was suspected of being infected during this period.

Plasma derivatives are manufactured by pooling the plasma of several thousand donors. Source plasma is stored for two months or more before sending domestic fractionators to eliminate virally-contaminated plasma detected during the storage period.

4. 血液の安全対策

日本赤十字社では、輸血用血液製剤に対し、現時点で可能 な限りの安全対策を講じ、安全な血液を医療機関に提供して いる。

主な安全対策

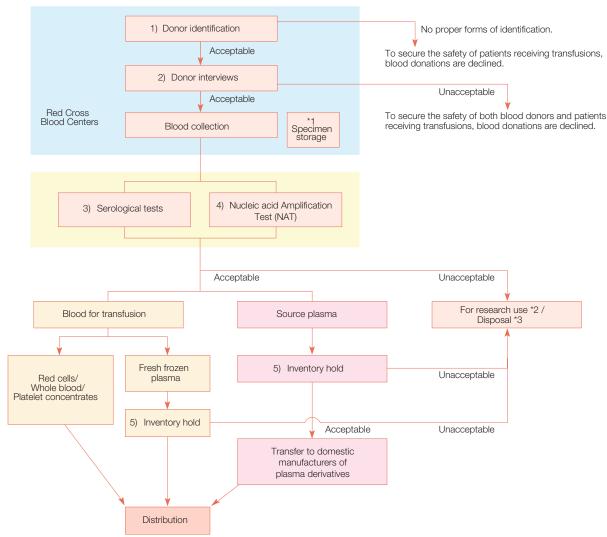
1) 本人確認

安全で責任ある献血をお願いするために、献血受付時に身分証明書等の掲示をお願いし、本人確認を実施している。

2) 問診

予め回答いただいた問診票をもとに、専門の医師により献血者の健康状態を確認している。

3) 感染症関連検査


全国8カ所の施設において主要な輸血感染症の病原体についての血清学的検査(抗原・抗体検査等)を実施している。

また、1999年(平成 11年)から、HBV、HCV、HIV について核酸増幅検査(NAT)を実施している。NAT はウイルスの遺伝子を構成する核酸(DNA または RNA)の一部を約1億倍に増幅することによってウイルス自体を高感度に検出する方法である。NAT 導入当初は 500 本をまとめて1検体として NAT を実施していたが(500 プール NAT)、プールサイズを50本、20本と段階的に減じ、2014年(平成 26年)8月より個別 NAT を導入した。

4) 貯留保管

輸血用血液製剤のうち新鮮凍結血漿(FFP)については、2005年(平成17年)8月から6ヵ月間の貯留保管を行い、その間にウイルス感染等が疑われた血液を排除したうえで医療機関に供給している。

また、血漿分画製剤は、数千人分の血漿をプールして製造するが、その原料血漿については、製造に入るまで2カ月以上貯留している。その間にウイルス混入等が判明した血漿を排除したうえで、原料血漿を国内の事業者に供給している。

Notes:

- In 1996, JRCS began storing blood samples of all donations (frozen at a temperature of -30°C) for a period of 10 years at the beginning. This period was increased to 11 years in December 2004. The samples enable investigation into causal relationships in cases where transfusion transmitted viral infection is suspected and into causalities of adverse transfusion reactions. Specimen storage also enables look-back studies as measures to prevent the spread of infections.
- *2 These are used for research to contribute to the progress of transfusion efficacy and safety and the production of testing reagents for safe transfusions.
- *3 These are discarded as infectious medical waste under proper management.

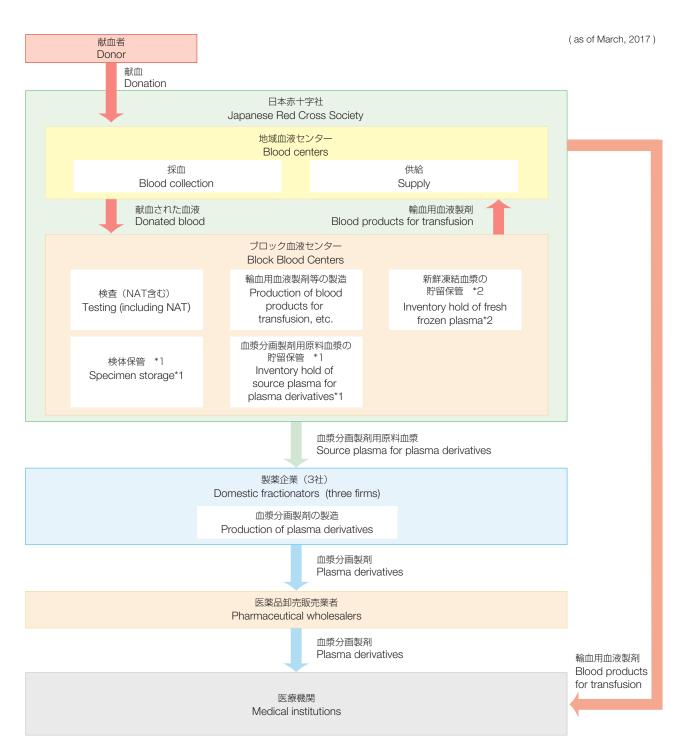
注釈:

- * 1 日本赤十字社では、1996年(平成8年)より輸血による ウイルス感染症が疑われた症例の輸血との因果関係の解明や 輸血副作用の原因調査ができるよう、また、感染拡大を防止 する対策としての遡及調査(ルック・バック)ができるよう、 献血者の検体を献血の度に当初は10年間、2004年(平成 16年)12月より11年間冷凍保管(-30℃)している。
- *2 輸血の有効性・安全性の向上のための研究や、安全な輸血のための検査試薬製造等に有効的に活用させていただくことがある。
- *3 感染性の医療廃棄物として適切な管理のもと廃棄している。

5. Flow of Blood Services

\sim From Blood Donation to Medical Institution \sim

The function of blood includes transporting nutrients and oxygen around the body and building immunity, all of which are indispensable to maintaining life. Since a means of completely substituting blood functions does not exist at present, it is in many cases impossible to administer medical treatment without transfusion therapy.

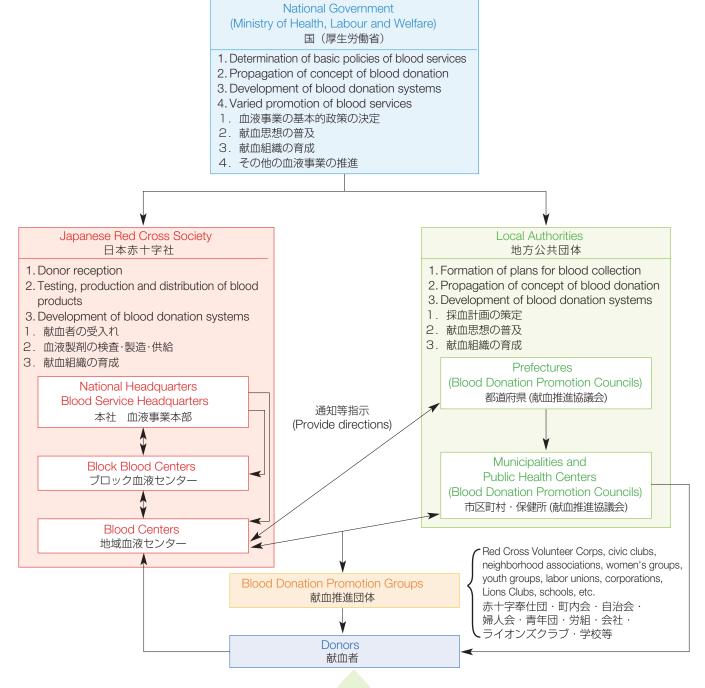

5. 血液事業の流れ

~ 献血から医療機関まで~

血液は栄養や酸素の運搬、免疫など人間の生命を維持するために欠くことのできない機能を含んでいる。現在、血液の機能を完全に代替することができる手段は存在しないため、輸血療法は医療において欠くことができないものとなっている。

Donated blood is used in blood products for transfusion as red blood cells, platelets and plasma, as well as plasma for manufacturing plasma derivatives that have specific protein qualities in the plasma, as it is extracted and purified.

献血された血液は、赤血球、血小板、血漿などの輸血用血液製剤として使われるほか、血漿中の特定のタンパク質を抽出・精製した血漿分画製剤の原料として使用される。


- *1 The operations of inventory hold of source plasma for plasma derivatives and specimen storage are not only conducted at the Kinki Block Blood Center (Fukuchiyama branch) and the Kyushu Block Blood Center, but also partially entrusted to the Japan Blood Products Organization.
- *2 The operations of inventory hold of fresh frozen plasma are also conducted at some blood centers.
- * 1 分画製剤用原料血漿貯留保管業務及び検体保管業務は、近畿 ブロック血液センター(福知山分室)、九州ブロック血液セン ターで実施しているほか、日本血液製剤機構にも一部を委託
- *2 新鮮凍結血漿の貯留保管については、一部の地域血液センターでも実施

6. Promoting Blood Donations

A 1964 Cabinet decision made it the duty of the national government and local authorities to disseminate the concept of blood donating and promote the creation of blood donation systems. In addition, under this Cabinet decision, the Japanese Red Cross Society (JRCS) was required to improve its system for receiving blood donations. Japanese Red Cross blood centers were later established throughout Japan and these centers must cooperate with the respective prefectural and municipal governments to implement activities such as promoting the blood donation movement. With the enactment of the Law on Securing a Stable Supply of Safe Blood Products on July 30, 2003, national and prefectural governments have now become central actors in this enterprise.

6. 献血推進体制

1964年(昭和39年)の閣議決定により、献血思想の普及と献血組織の育成は国及び地方公共団体の任務とし、日本赤十字社は献血の受入れ体制の整備を推進するものとされた。その後、全国に次々と日本赤十字社の血液センターが設置され、献血運動の推進面についても各都道府県及び市区町村などと各血液センターが連携して活動を展開している。2003年(平成15年)7月30日に施行された「安全な血液製剤の安定供給の確保等に関する法律」により、各都道府県も含め、献血推進の主体が行政にあることが明確なものとなった。

6.1 Encouraging Blood Donations

To secure an adequate supply of blood through donations, it is important that the public be made aware of the need to give blood in the spirit of mutual aid and to understand the necessity of ensuring the greatest possible safety of blood. To this end, JRCS conducts a national blood donation campaign every year, carrying out national and regional promotional activities through the media and by other means, in cooperation with the government.

6.1.1 Campaigns

1. A National Campaigns

1) Sharing Blood in the Spirit of Love Campaign

Every July is Sharing Blood in the Spirit of Love month, a nationwide campaign to promote blood donation is conducted under the joint auspices of the Ministry of Health, Labour and Welfare, prefectural governments and JRCS, with the support and cooperation of various medical and media organizations. During this month, a public relations campaign for blood donation is conducted in the media, and various local activities are scheduled to spread accurate knowledge about blood, to inform people about the importance of giving blood and to elevate awareness of and respect for the concept of blood donation. The main event during this month is the National Awards Ceremony for the Promotion of Blood Donation. It is held in mid-July every year, with the location rotating among Japan's prefectures. In the presence of JRCS's Honorary Vice-President HIH Crown Prince Naruhito, individuals and groups who have made outstanding efforts to promote blood donation are honored.

6.1 献血受入れの推進

献血によって必要な血液を確保するためには、国民に対し相互扶助の精神に基づく献血の必要性と、より安全性の高い血液の確保の必要性を理解してもらうことが重要である。毎年全国に献血運動を展開するために、行政と連携し、マスコミなどを活用して、全国的・地域的規模で普及活動に努めている。

6.1.1 キャンペーン関係

1. 全国的なキャンペーン

1) 愛の血液助け合い運動

毎年 7 月に「愛の血液助け合い運動」月間が設けられ、厚生労働省・都道府県・日本赤十字社の主催により各種医療関係団体・報道関係団体などの後援・協賛のもと、全国的な献血推進運動が行われている。期間中はマスコミなどによる献血 PR や、地域ごとの行事が行われ、血液の正しい知識と献血の重要性をアピールし、献血思想の啓発・高揚を図っている。この期間のメイン行事として「献血運動推進全国大会」が、各都道府県の会場持ち回りで毎年 7 月中旬に開催され、日本赤十字社名誉副総裁である皇太子殿下のご臨席のもと、献血推進に功労のあった個人や団体の表彰などを行っている。

National Awards Ceremony for the Promotion of Blood Donation

2) "Red Cross, Life and Blood Donation" Haiku* Contest

Since 2006, JRCS has been holding an annual haiku contest from June to December. Its goals are to bring the lives saved through blood donations to the attention of elementary and junior high school students who may become donors in the future, to promote early awareness of blood donation among students, and to inform them of the importance of blood donations.

*Haiku is a Japanese poetic form that comprises 17 syllables.

Nationwide Christmas Blood Donation Campaign by Students

Every December since 1988, student blood-donation promotion volunteers across Japan have sponsored this campaign to make up for the winter shortage of blood and to obtain the understanding and cooperation of students regarding blood donation.

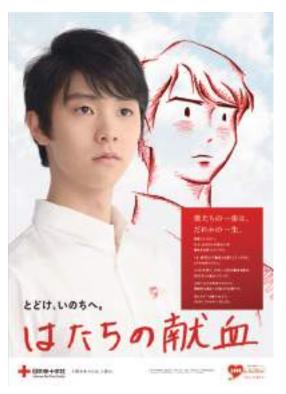
4) Give Blood at Twenty Campaign

Every year, beginning in January and continuing into February, a nationwide campaign is conducted under the joint auspices of the Ministry of Health, Labour and Welfare, prefectural governments and JRCS, with the support of the National Association of Commercial Broadcasters in Japan, the Association of Japanese Private Railways and the Japan Community Broadcasting Association. With its slogan "Give Blood at Twenty," this campaign has made a significant contribution to educating young adults about blood donation and to helping secure donors during the winter months.

2) 赤十字・いのちと献血俳句コンテスト

将来の献血者となりうる小学生や中学生を中心に、献血を通じて支えられる生命に意識を向けてもらい、早くから献血活動の意義の理解を促進し、献血の重要性を伝えることを目的に、2006年(平成18年)より毎年6月~12月頃にかけて俳句コンテストを実施している。

3) 全国学生クリスマス献血キャンペーン


毎年12月に、冬場の血液不足を補う手段の一つとして、また、若年層への献血の理解と協力を促すことを目的として、日本全国の学生献血推進ボランティアが主催し1988年(平成1年)より実施している。

4) はたちの献血キャンペーン

毎年1月から2月にかけて、厚生労働省・都道府県・日本赤十字社が主催し、一般社団法人日本民間放送連盟、一般社団法人日本民営鉄道協会、一般社団法人日本コミュニティ放送協会の後援を得て献血キャンペーンを実施している。期間中は、はたちの献血をスローガンに、新たに成人を迎えた若者を中心に若年層への献血の啓発と冬期における献血者確保に大きな効果をあげている。

Promotional Poster of Nationwide Christmas Blood Donation Campaign by Students

Promotional Poster of Give Blood at Twenty Campaign

5) LOVE in Action Project

This year-round project began as an experiment in 2009. It was designed to convey to young people the significance of blood donation, to help them feel a sense of connection to its necessity and importance, and to arouse interest in it. With the cooperation of artists popular with young people, JRCS carries out ongoing radio broadcasts, musical events, providing information via website and Facebook and so forth. A variety of related campaigns are ongoing based on this project.

5) LOVE in Action プロジェクト

若年層に献血の意義を伝え、献血の必要性や重要性を身近なものとして感じてもらうこと、献血への興味を喚起することを目的に、2009年(平成21年)から新たな試みとして始まった通年のプロジェクトである。若年層から支持されるアーティスト等の協力をいただき、継続的なラジオ放送や、音楽イベント、ウェブサイトやフェイスブックでの情報発信等を実施している。本プロジェクトを基軸として各種キャンペーンと連動している。

LOVE in Action Meeting (LIVE) 2017

2. Regional Events

In each prefecture, meetings to promote blood donations and gatherings to thank donors are held, as are unique donation events. They have a significant impact on raising awareness of blood donation through reports in local mass media, municipal public relations magazines and so forth.

2. 地域的なイベント

各都道府県においても、献血推進大会や献血感謝の集いなどが開催されるとともに独自の献血イベントなども行われ、地元のマスコミ報道や市区町村の広報誌などを通じ献血思想の普及に大きな成果をもたらしている。

6.1.2 Public Relations Materials for the Promotion of Blood Donation

1) PR Targeting Donors

JRCS creates pamphlets, DVDs, websites and so forth explaining the necessity and importance of blood donations in easy-to-understand language. It produces commercials, posters calling for blood donations and small tokens for donors.

6.1.2 献血推進のための広報資材

1) 献血者を対象とした広報

献血の必要性や重要性をわかりやすく解説したパンフレットや DVD、ホームページの製作、献血を呼びかける CM やポスターの製作、献血者向け記念品の製作を行っている。

2) PR Targeting Blood Donation Organizations and Donation Promotion Groups

JRCS creates pamphlets explaining blood donation and providing information about blood in easy-to-understand language for people in charge at blood donation organizations and leaders of donation promotion groups.

3) PR Targeting Deferred Donors

JRCS creates pamphlets including nutritional advice and so forth, so that those who were deferred from donation through the hemoglobin determination or other tests will understand the reasons for their disqualification and will be able to donate blood in the future.

4) Public relations targeting people past donor age

JRCS produces pamphlets to encourage people past the age of blood donation to remain engaged in donation related activities.

2) 献血協力団体や献血推進団体を対象とした広報

献血協力団体の担当者や献血推進団体の指導者向けに、献血と血液に関する内容をわかりやすく解説したパンフレットを製作している。

3) 献血に参加いただけなかった方を対象とした広報

ヘモグロビン濃度測定などで献血できなかった方に、その 理由を理解していただくとともに、再度献血に来ていただけ るよう、栄養指導などを盛り込んだパンフレットを製作して いる。

4) 献血卒業者を対象とした広報

献血への参加ができなくなった後も、献血関連活動に継続的に協力いただけるようパンフレットを作製している。

6.2 The Formation of Organizations

A Blood Donation Promotion Council has been established in each prefecture to disseminate the concept of blood donating and promote the development of blood donation systems. The prefectural governor acts as chair and other members are selected from representatives in the medical field, corporations, labor unions, high schools, local organizations, the media, government agencies and the Red Cross Society. Similar blood donation promotion councils have also been organized at the municipal level and at public health centers.

The blood centers work in cooperation with the Blood Donation Promotion Council in each region to request business establishments, civic clubs, schools and other groups to cooperate with the blood-donation services on an office-wide or a community-wide basis. Seminars are also held at the various blood centers, as well as at the Blood Service Headquarters, to promote the creation of blood-donation systems. These include explanatory lectures for those in charge of promoting blood donating in the various blood-donation groups, Red Cross Volunteer Corps, Lions Clubs and religious groups. In addition, reinforcement of the nationwide organization of student blood-donation promotion volunteers at universities and junior colleges, etc. is conducted, and the national conference of representatives of them is organized annually.

6.2 献血組織の育成

各都道府県には、献血思想の普及と献血組織の育成などを図ることを目的として献血推進協議会が設置されている。この協議会の会長は知事が行い、医療関係、企業、労働組合、高等学校、地域団体、報道機関、行政機関及び赤十字などのそれぞれの代表者が委員となっている。各市区町村や保健所単位にも同様に献血推進協議会が設置されている。

血液センターでは各地の献血推進協議会と協力して、事業所や町内会、学校などに働きかけて職場ぐるみ、地域ぐるみの献血の要請に努めている。また、血液センター及び本社においては、献血組織の育成のため、献血団体や赤十字奉仕団、ライオンズクラブ、宗教団体などの献血推進団体の担当者に対する献血説明会や、大学・短大等の学生献血推進ボランティアの全国組織の強化を行い、年1回全国学生献血推進代表者会議を開催している。

6.3 Enlisting Donors

1) Blood Donation Acceptance Plans

Through discussion with the relevant prefectural government, each blood center must estimate the demand for blood products for transfusion at medical institutions within its jurisdiction to make sure that adequate supplies are available. Additionally, each center sets an annual plan by donation method to accept apheresis donations by taking into account the plasma needed for plasma derivatives. Approved by local authorities, this plan is assigned to various municipalities and public health centers, based on the population and past performance in the area concerned. Referring to this plan and such data as the bloodmobile performance during the previous year, each municipality or public health center prepares a proposed schedule of group donations by offices, communities, or schools and gives this information to the blood center in its area. Each blood center then divides its overall blood-donation acceptance plan into more specific plans for permanent facilities such as blood centers and donation rooms and for bloodmobiles and collection sites under the location system.

2) Steps in Donor Enlistment

(See Steps in Group Donor Enlistment on page 28 and Steps in Enlisting Walk-in Donors on page 29)

3) Donor Registration System

Although the blood centers strive to keep pace with demand from medical institutions for blood, their supplies become low at certain times due to weather conditions or holidays. For example, imbalances in the supply by blood group sometimes occur when there have been orders for massive volumes of blood in preparation for major surgery. For this reason, a pool of donors that can respond to such situations should always be available. When a patient receives repeated transfusions of platelets, the body develops antibodies for the HLA of the platelets and the platelets for transfusion are destroyed and sometimes reduced as an effect. In this case, the patient needs a platelet match for this HLA. So, it is necessary to secure donors who can be typed for HLA antigens beforehand and requested to give plateletpheresis donations as necessary.

To secure a stable blood supply, the blood centers have organized donor registration systems to enlist volunteers who are willing to give blood when requested to do so by the center, at a designated time.

Moreover, to be able to provide transfusions to individuals with rare blood groups, the centers are working to register potential donors among such groups. When rare blood is actually needed, frozen blood stored at block blood centers throughout the country can be used. A system of cooperation with other countries has also been organized by which the Red Cross Societies of other nations can be asked for support when it is difficult to obtain units of a rare blood group domestically, even after requests have been made to registered donors.

6.3 献血者募集活動

1) 献血受入れ計画

各血液センターでは都道府県と協議のうえ、管内医療機関での輸血用血液製剤の需要予測を立ててこれを賄うことはもちろんのこと、血漿分画製剤用原料血漿の確保も勘案して、献血方法別の年間の献血受入れ計画を設定する。この計画は、地方公共団体の了承を経て、各市区町村、保健所に割り振られる。各市区町村及び保健所では、当該地域の人口や過去の実績などを算定基礎として割り振られた献血受入れ計画に基づき、前年の配車実績などを参考に、職域、地域、学域などの献血団体の実施日程案を作成のうえ、これを血液センターに連絡することとなっている。また、血液センターの献血受入れ計画は、血液センターや献血ルームなどの固定施設での受入れと献血バスやオープン献血での受入れなどにそれぞれ分けられ設定されている。

2) 献血者募集の実際

(28ページの「団体献血」、29ページの「街頭献血」を参照)

3) 献血者登録制

血液センターでは、医療機関からの需要に応じた採血に努めているが、気候や休暇の関係で時期的に血液が不足したり、大手術などのため多量の発注が入り血液型別にアンバランスが生じたりした場合には、即応できる献血者を確保する必要がある。さらに血小板を繰り返して輸血すると、血小板上にある HLA に対する抗体ができて輸血された血小板がこわされ効果があがらなくなることがある。このような患者さんには HLA を適合させた血小板が必要となる。そのため、あらかじめ献血者の HLA 型を検査して必要に応じ血小板成分献血への協力を要請する必要がある。

そこで、血液センターでは献血者登録制を設け、血液センターからの依頼に基づき指定した日時に献血していただける 献血登録者を募集し、血液の安定確保に努めている。

また、きわめて少数の人々にみられる血液型を持つ人の輸血に対応するため、まれな血液型の登録が進められている。 実際にまれな血液型の血液が必要となった時には、全国のブロック血液センターであらかじめ冷凍保存してある血液を使用したり、献血登録者に献血を依頼したりしているが、国内での確保が困難な場合は各国赤十字社に要請するなど、諸外国との協力体制も確立されている。

Steps in Group Donor Enlistment (business establishments, civic clubs, schools, etc.)

Setting of Actual Donation Date

Final Meeting

After consideration of the previous year's results and other factors, a blood collection schedule is decided at the beginning of the fiscal year.

By no later than two to three months before the donation day, a specific date is set through consultation with the person in charge of the donation group.

To confirm specifics, a representative of the blood center visits the donation group no later than about three weeks before the scheduled donation date. The group is also given PR materials and asked to carry out advance publicity.

Items to be confirmed:

- Date, time, expected number of donors
- Parking place for bloodmobile, location of donation site, availability of power source, etc.
- Availability of volunteers to receive and to attend to donors on donation day
- Need for explanatory lectures prior to donation day or for a PR vehicle on donation day

Announcement posters are displayed, and fliers are distributed.

The donation schedule is published in newspapers and local bulletins (civic club bulletins, school bulletins, etc.)

Explanatory lectures are given as needed.

Through direct visits by blood center representatives to the office or through in-house broadcasts at businesses, workers are urged to give blood (business establishments).

Local residents are recruited by PR vehicles and media broadcasts.

団体献血(事業所、町内会、学校等の 献血団体による)の場合

年度当初に前年の実績などを考慮して、おおよその配車計画を組む。

2~3カ月くらい前までに献血団体の担当 者と協議して、献血実施日を確定する。

3週間くらい前までに献血団体を訪問して、 献血実施のための確認をするとともに、PR 用資材を渡して事前の広報を依頼する。

<確認事項>

- ・ 実施日、受付け時間、採血予定人数
- ・ 車両の駐車位置、献血会場の場所、電源 の借用可否など
- 当日の受付け、接遇などのボランティア の有無
- 事前の献血説明会や当日の広報車の必要の有無

周知用のポスターを掲示したり、チラシを回覧する。

市区町村の広報誌や新聞などに献血予定を掲載する。(町内会・学校など)

必要に応じて献血説明会を開催する。

各職場への訪問や社内放送により従業員に 献血を呼びかける。(事業所)

広報車や有線放送により住民に呼びかける。

Advance Publicity

Same-Day Publicity

Steps in Enlisting Walk-in Donors (individual donors)

Permission for use is obtained from those in charge of the train station road, station plaza, or park (e.g., the police chief, station master, or municipal government).

街頭献血(一般通行人が主体)の場合

駅前の道路や広場、公園などの管理者(警 察署長、駅長、市など)に使用許可を得る。

Advance Publicity

Securing a Blood

Collection Site

If places are available, announcement posters are displayed after obtaining permission to do so. The donation schedule is published in municipal bulletins and local newspapers.

If necessary, workers in nearby offices and registered donors are asked to give blood.

周知用のポスターを掲示できる場所があれ ば、許可を得て掲示する。市区町村の広報 誌や新聞などに献血予定を掲載する。

付近の事業所や献血登録者にも必要に応じ 献血を依頼する。

Same-Day Publicity

Using, for example, a hand-held microphone, passersby are called on to donate blood. In addition, handbills are distributed, and PR vehicles are driven through surrounding areas.

Volunteer organizations like the Red Cross Volunteer Corps and Lions Clubs are asked to receive and to attend to donors as necessary.

通行人へのハンドマイクなどによる献血の 呼びかけやチラシなどを配布する。広報車 により周辺地域へ呼びかける。

赤十字奉仕団やライオンズクラブなどのボ ランティア団体にも必要に応じ受付け・接 遇などの協力を要請する。

Student Blood-Donation Promotion Volunteers are called on to Donate Blood

6.4 Donor Appreciation

JRCS takes a number of steps to express its appreciation to those who donate blood.

1) Hospitality to Donors, Mementos, etc.

Each donation site provides its own services for donors in order to provide a comfortable place for them to donate blood. We offer a small token as appreciation for donation.

2) Notification of the Results of Blood Tests

To help promote the health of blood donors, donors are informed of the results of biochemical examination of their blood. In light of recent trends in the health of the Japanese people, since 2009 JRCS has carried out glycoalbumin testing, which is related to testing for diabetes.

3) Recognition System

JRCS presents awards to individuals and groups that have made important contributions to blood donation activities according to established criteria. Awards are given in appreciation of service and to applaud efforts. In addition, the directors of JRCS prefectural blood centers and heads of chapters, prefectural governors, the Ministry of Health, Labour and Welfare, etc., also present certificates of appreciation and commendation (see Table A).

In addition, JRCS has established criteria for donor recognition and presents mementos and certificates in appreciation of ongoing donations (see Table B).

The above steps are implemented in such a way that the hospitality and items provided do not amount to payment for blood, which would damage the honorable feelings of blood donors in Japan. (Provisions in the Law on Securing a Stable Supply of Safe Blood Products prohibiting the collection of blood for payment and setting penalties for doing so went into effect on August 31, 2002.)

6.4 献血者への感謝

日本赤十字社では、献血に参加された方への感謝として、様々なことを実施している。

1) 献血者の接遇・記念品等

献血に来ていただいた方に居心地のよい空間を提供するために、各献血会場ではそれぞれ独自のサービスが実施されている。また、献血のご協力をいただいた方に、感謝の気持ちをこめてささやかな記念品を贈呈している。

2) 血液検査結果のお知らせ

献血していただいた方の健康促進に役立ててもらえるよう、生化学検査成績を献血者全員にお知らせしている。近年の日本国民の健康状態の傾向を考慮し、2009年からは糖尿病関連検査であるグリコアルブミン検査を開始した。

3) 表彰制度

定められた基準を満たす、献血活動に功労のあった個人や団体に対して表彰を行っており、その協力に対する感謝の気持ちを表すとともにその功労を讃えている。また、この他、各都道府県の血液センター所長や支部長、知事や厚生労働大臣などからも感謝状や表彰状が贈られている(表 A)。


さらに、献血者顕彰規程を設け、継続的な献血の協力に対し感謝の意を表すため、記念品又は感謝状を贈呈している(表 B)。

ただし、以上のことについては、国内献血者の尊い気持ちが傷つけられるような、売血ともとられかねない接遇や物品の提供にならない範囲内で行われている。(2002年(平成14年)8月31日に「安全な血液製剤の安定供給の確保等に関する法律」において有料での採血等の禁止する部分とその罰則にかかる部分が施行された。)

Original Donation Card

Donation Card for Repeat Donor Club Member Replacement with new Donation Card for Repeat Donor Club Member has started on October 3, 2011.

Donor Recognition Awards

Table A

Recipient	Criteria	Award
Diagd Danage	70 donations	Silver Merit Award (original glass goblet)
Blood Donors	100 donations	Gold Merit Award (original glass goblet)
	5 years of activity	Certificate of Appreciation from the chapter president (silver frame)
Blood Donation Groups	10 years of activity	Certificate of Appreciation from the chapter president (gold frame)
Blood Donation Promotion Group	15 years of activity	Silver Merit Award (plaque)
Blood Donation Promoters	20 years of activity	Gold Merit Award (plaque)
	Every 10 years of activity after winning the Gold Merit Award	Certificate of Appreciation

Table B

Recipient	Criteria	Award	
	10 donations (blue)		
	30 donations (yellow)	Memento	
	50 donations (green)	(original glass cup)	
	Each additional 50 donations (purple)		
Blood Donors	Persons who have given blood 50 or more times prior to their 60th birthday and Certificate of Appreciation	Memento (original glass cup) and continue to donate blood thereafter	
	Persons who have given blood 50 or more times prior to their 68th birthday and continue to donate blood thereafter	Certificate of Appreciation	

Certificate of Appreciation and Mementos

7. Blood Collection

7.1 Blood Collection Teams

Blood collection teams have been organized, mainly to visit various regions and to receive donations of blood. Each team usually has six or seven members, including one doctor, three or four nurses and two to three clerical workers. The number of members is adjusted in accordance with the number of expected donors and the availability of volunteers.

In contrast, donation rooms placed on busy streets, at a convenient place for blood donors, receive mainly apheresis donations (plasma and platelets). In these blood donation rooms, blood collection teams are organized with doctors, nurses and clerical workers in accordance with the size and needs.

7.2 Blood Collection Procedures

Prior to blood collection, a potential donor must be interviewed. At the same time, hemoglobin and blood pressure must be determined in accordance with legally stipulated standards. A doctor then examines all data and decides if it is appropriate for the individual to give blood. Individuals whose health might be adversely affected by donating blood are requested not to donate blood.

7.3 Response to Adverse Reactions and Medical Accidents

Although there are extremely few serious adverse reactions related to the collection of blood, some people may rarely experience vasovagal reaction (VVR) due to anxiety in having blood drawn or other psychological factors. For these reasons, the necessary first-aid supplies are always prepared and efforts are made to provide a supportive environment, with the education and training of staff, to help minimize any such side effects. In addition, JRCS encourages donors to take a beverage before and after donating blood and to cross their legs and do applied muscle tension activities during blood donation, and provides them with information regarding any adverse reactions after donating blood.

A donor who has a health problem (as a side effect of having blood drawn) is given first-aid treatment in accordance with the symptoms. If necessary, the donor will be accompanied to a medical institution for examination and transported home afterwards. The subsequent status of any damage to the donor's health will be followed up. Thus, appropriate measures are implemented.

For those who are examined in medical institutions for nerve damage or VVR caused by drawing blood, a relief system for adverse effects to blood donor's health was established based on the national government's Guidelines for Compensation for Adverse Effects to Health to Blood Donors and was implemented on October 1, 2006. This relief system provides for a certain amount of money to be paid on a fair, transparent and prompt basis, with the appropriate involvement of the national government, to ensure that blood donors feel safe in cooperating with blood collection programs.

7. 採血業務

7.1 採血班

各地に出向いて献血を受入れる移動採血では、これに必要な人員を採血班として編成している。その編成人員は医師1名、看護師3~4名、事務職2~3名、合計6~7名を通常1個班としている。ただし、献血予定人数の多少やボランティアの協力の有無などによって、必要に応じた増減を行っている。

一方、献血者にとって利便性の良い繁華街に設けられた献血ルームでは、主に成分献血(血漿及び血小板)を中心に受入れており、規模・必要に応じた医師・看護師・事務職の人員で採血班を編成している。

7.2 採血の手順

採血の際には、法律で定められた基準などに基づいて、ヘモグロビン測定、問診、血圧測定などの事前検査を行い、医師が総合的に判断し採血の適否を下しており、採血することで健康を損なう恐れのある方については、献血をご遠慮いただいている。

7.3 採血に伴う副作用と事故への対応

採血により特に重大な副作用を起こすことは極めて少ないが、まれに採血に対する不安や精神的な作用などによって、血管迷走神経反応(VVR)などの副作用を起こすことがある。このため、日頃から採血に伴う副作用を予防するための環境整備や教育訓練を行うとともに、必要な救急用品を準備している。また、献血者に対しても、採血前後の水分摂取、下肢筋緊張通勤の推奨や、採血副作用に関する情報提供を行っている。

健康被害(採血副作用)を起こした献血者には症状に応じた応急処置を施し、必要な場合は医療機関に同行し受診やそれに伴う送迎などを行う。また、献血者のその後の健康被害状況を把握するなど適切な措置を講じている。

採血に起因する神経損傷や VVR などにより医療機関を受診した健康被害については、2006 年(平成 18 年)10月1日から、国が策定した「献血者等の健康被害の補償に関す

A Bloodmobile

るガイドライン」により制定された献血者健康被害救済制度の運用が開始された。本制度は国の適切な関与の下、公平性、透明性及び迅速性に配慮し一定額の給付が行われ、献血者が安心して献血に参加できるための救済制度である。

Blood Collection Procedure

- (1) Reception
 - The Information System for Blood Service Data was introduced to all facilities after June 25, 2014.
 - Upon donor registration, a donor is asked to enter a password to confirm their identity and present a form of identification such as a passport. The biometrics identification system was introduced as well as the Information System for Blood Service Data.
- Since the questionnaire has been computerized, a donor is asked to answer questions by touch panel.
- (2) Interview and determination of blood pressure
 - A doctor interviews the potential donor and measures his or her blood pressure.
 - Prior to an apheresis donation, an electrocardiogram and other examination may occur if required by the doctor.
 - A doctor comprehensively gives an order of adequate blood collection type.
- (3) Pre-collection tests
 - Simple hemoglobin determination equipment or an automated cell counter is used to obtain a hemoglobin value and confirm ABO blood type.
- A nurse checks whether a donor meets blood donation standards based on the donor's measurement results including the hemoglobin level and selects the type of blood collection within the scope of the comprehensive order of adequate blood collection type.
- (4) Blood collection
 - A nurse collects the blood from the donor in accordance with the doctor's instructions.
 - There are two categories of blood collection: 200mL or 400mL whole blood collection and apheresis (plasma or platelet collection).
 - Polyvinylchloride or other types of bags are used for blood collection.
- (5) Post-donation (Rest Period)
 - The donor is advised to rest and replenish their fluids after donating blood.
 - A history of the donation is recorded on a donation card, which is returned to the donor.

【採血の手順】

- (1) 献血受付
 - 平成26年6月25日以降は全施設に血液事業情報システムが導入された。
 - 受付は、パスポート等の提示と暗証番号による本人確認を実施する。この 血液事業情報システムの導入とともに生体認証システムも導入された。
 - 問診票が電子化されたことから、タッチパネルにより問診票に回答する。
- (2) 問診·血圧測定等
 - 医師は、問診及び血圧測定を行う。
 - 成分献血の前には、医師の指示により、必要に応じ心電図の検査等を行う。
 - 医師は包括採血適種類指示をする。
- (3) 採血前検査
 - 簡易型へモグロビン測定装置又は自動血球計数測定装置によるヘモグロビン値等の測定、並びに ABO 血液型の確認を行う。
 - 看護師は、ヘモグロビン等の測定結果から、採血基準に合致していることを確認し包括的採血指示の範囲内で採血する種別を選択する。
- (4) 採血
 - 採血は、医師の指示に基づいて看護師が行う。
 - 採血には、全血採血(200mL・400mL)と、成分採血(血漿又は血小板 採血)がある。
 - 採血容器は、ポリ塩化ビニール製等のバッグを使用している。
- (5) 処遇(休憩)
 - 採血後は充分な休憩と充分な水分をとってもらう。
 - 献血カードに献血記録を記入のうえ本人に渡す。

Blood Collection Standards

	Whole Blood Donation		Apheresis Donation	
Items	200mL donation	400mL donation	Plasmapheresis donation	Plateletpheresis donation
Volume Collected	200mL	400mL	Up to 600mL (No more than 12% of circulating blood)	
Age	16-69 years*	Males: 17-69 years* Females: 18-69 years*	18-69 years*	Males: 18-69 years* Females: 18-54 years
Body Weight	Males: 45kg or more Females: 40kg or more	Males and females: 50kg or more	Males: 45kg or more Females: 40kg or more	
Systolic Pressure	90 mmHg or more			
Blood quantity (hemoglobin concentration)	Males: 12.5g/dL or more Females: 12.0g/dL or more	Males: 13.0g/dL or more Females: 12.5g/dL or more	12.0g/dL or more (11.5g/dL for females if erythrocyte indices are at normal level)	12.0g/dL or more
Platelet Count				150,000/μL or more
Maximum Number of Donations Permitted / Year	Males: Up to 6 donations Females: Up to 4 donations	Males: Up to 3 donations Females: Up to 2 donations	24 donations of plasmapheresis and plateletpheresis, with 1 plateletpheresis donation counted as 2 donations	
Maximum Volume of Blood Donation Males: Up to 1,200mL Females: Up to 800mL				

In order to put donor safety first, we ask physicians to make comprehensive judgments in light of the standards set by the national government.

The Interval of Donations

Present donation	Whole Blood Donation				Donation
Next donation	200mL donation	400mL donation	Plasmapheresis donation	Plateletpheresis donation*	
200mL donation		Males can donate blood from the same day of the week 12 weeks after the donation.			
400mL donation	Both males and females can donate blood from the same day of the week 4 weeks after the donation.	Females can donate blood from the same day of the week 16 weeks after the donation.	Both males and females can donate blood from the same day of the week 2 weeks after the donation.		
Plasmapheresis donation		Both males and females can donate blood from			
Plateletpheresis donation		the same day of the week 8 weeks after the donation.			

^{*} If plasma is not included, plateletpheresis donation can be made after one week.

^{*}Considering donor health, donors who are 65 years of age or older must have donated at least once between the ages of 60-64.

8. Laboratory Testing

Eight blood centers across Japan test all donated blood to ensure the safety of blood units for medical use (blood-quality tests) (see the table on p. 37 for the test items).

For tests related to infectious diseases, in addition to the screening tests that mainly use antigen-antibody reactions of HBV, HCV, and HIV, nucleic acid amplification testing (NAT) screening for HBV, HCV, and HIV has been introduced since October 1999. Regarding NAT, since August 2014, pooled NAT for collectively testing blood from 20 individuals was changed to individual NAT for testing each individual separately to further ensure the safety of blood products for transfusion prepared from donated blood.

In addition, HLA-related tests (HLA Typing and HPA Typing), tests for rare blood groups, CMV antibody tests and other tests are performed to distribute the blood products for transfusion to meet specific blood recipients.

To make blood transfusions even safer, the blood centers also serve as reference laboratories for local medical facilities that use transfusion medicine.

In order to show our appreciation to donors, we perform seven biochemical tests and eight hematological tests for donors, and inform them of the results with their ABO and Rho(D) grouping. These test results are mailed to donors who have expressed their wish to be informed in advance in a confidential letter, some two weeks after the donation. Confidential letters are also sent to donors who have expressed their wish to be notified of any problematic results in HBV, anti-HCV, syphilis and anti-HTLV-1 tests within one month after the donation.

8. 検査業務

献血された全ての血液について、医療に使用される血液の 安全性を確保するための検査(品質検査)を全国8カ所の血 液センターで実施している(検査項目は37ページの表を参 照)。

感染症関連検査は、HBV、HCV、HIV等の抗原・抗体反応を主体とするスクリーニング検査に加えて、1999年(平成11年)10月から、HBV、HCV、HIVに対する核酸増幅検査(NAT)を導入している。なお、NATについては、2014年(平成26年)8月から、これまで行ってきた20人分の血液をまとめて検査するプールNATから1人分ずつ検査する個別NATに変更し、献血血液から調製される輸血用血液製剤の更なる安全性の確保に努めている。

このほか、必要に応じ HLA 関連検査(HLA タイピング・ HPA タイピング)、まれな血液型検査、CMV 抗体検査等を 行って、患者に適合した輸血用血液製剤を供給している。

血液センターは輸血をより安全なものとするため、地域の 輸血医療におけるリファレンス・ラボラトリーの役割も担っ ている。

また、献血者には、感謝の意を表すための検査(7項目の生化学検査、8項目の血球計数検査)を行い、ABO・Rho(D)の血液型とあわせて検査結果をお知らせしている。これらの検査成績はいずれも通知を希望された方を対象とし、献血後概ね2週間程度で親展(書簡の郵便)にて通知する。また、受付時に、B・C型肝炎検査、梅毒検査、HTLV-1 抗体検査の結果通知を希望された方には、異常を認める場合のみ献血後 1 カ月以内に親展(書簡の郵便)にて通知している。

Receiving Blood Samples

Blood Typing

Infectious Disease Test and Biochemical Test

NAT Screening

Blood-Quality Tests

Test	Explanation			
ABO grouping test	The final determination of the ABO grouping is conducted by the collation of the antigen (A and B) test and the antibody (anti-A and anti-B) test.			
Rh grouping test	Rh Antigen is tested for the presence of D antigens.			
Irregular antibody screening	The presence of irregular antibodies in blood that might cause hemolytic transfusion reactions is screened for.			
Serologic test for syphilis	The presence of an antibody that is formed in people infected with a microorganism called Treponema pallidum is examined.			
Hepatitis B Virus test (HBsAg, anti-HBc and anti-HBs)	The tests for detecting HBsAg, anti-HBc and anti-HBs in the blood are conducted to detect hepatitis B virus.			
Anti-HCV test	Anti-HCV tests are conducted to detect hepatitis C virus.			
ALT test	ALT is elevated from the first stage of hepatitis, and this test is conducted to detect causative viruses of liver dysfunction and prevent the transmission of hepatitis viruses. Blood at high ALT level is not used for blood transfusion.			
Anti-HIV-1 and Anti-HIV-2 test	Antibodies for causative viruses of acquired immune deficiency syndrome (AIDS) are examined.			
Anti-HTLV-1 test	Antibodies for viruses of adult T-cell leukemia, HAM, and uveitis are examined.			
Human parvovirus B19 antigen test	B19 Antigen test is performed for human parvovirus.			
NAT (Nucleic acid Amplification Testing) for HBV, HCV, and HIV	A part of the nucleic acid of the virus that is present in the blood is artificially amplified in a test tube and the detection for the virus is inspected.			

品質検査

検査項目	説明
ABO 血液型検査	抗原(A 抗原、B 抗原)側、抗体(抗 A、抗 B)側の双方から判定し、両方の検査 結果を照合して決定している。
Rh 血液型検査	Rh 抗原の中でD抗原の有無を検査している。
不規則抗体検査	溶血性輸血副作用の原因となる不規則抗体の有無を検査している。
梅毒検査(梅毒血清学的検査)	梅毒トレポネーマと呼ばれる微生物に感染した人にできる抗体の有無を検査している。
B型肝炎ウイルス関連検査 (HBs 抗原、HBc 抗体、HBs 抗体)	B型肝炎ウイルスの検査で、HBs 抗原検査、HBc 抗体検査、HBs 抗体検査を行っている。
HCV 抗体検査	C 型肝炎ウイルスの検査で、HCV 抗体検査を行っている。
ALT(GPT)検査	肝炎初期から上昇する検査項目で、これまでの肝炎原因ウイルスとの関連と、肝炎 の防御のために検査を行っている。これが高値を示した血液は輸血に用いない。
HIV-1, HIV-2 抗体検査	後天性免疫不全症候群(AIDS)の原因となるウイルスの抗体を検査している。
HTLV-1 抗体検査	成人 T 細胞白血病、HAM、ブドウ膜炎の原因となるウイルスの抗体を検査している。
ヒトパルボウイルス B19 抗原検査	ヒトパルボウイルスの検査で、B19 抗原検査を実施している。
HBV, HCV, HIV に対する 核酸増幅検査	血液中に存在するウイルスを構成する核酸の一部を試験管内で人工的に多量に増幅 し、検査している。

Biochemical Tests

(The results of biochemical tests with that of ABO and Rh blood typing are sent to all donors on request.)

Test	Standard Value	Explanation
ALT (GPT)	8-49 (IU/L)	The largest quantities of the enzyme ALT are found in the liver. When liver cells are destroyed, this enzyme is released into the blood. The level of ALT in the blood is therefore significantly higher in cases of acute hepatitis; it is less high in cases of chronic hepatitis and fatty liver (obesity). The ALT level might be transiently elevated after hard exercise.
Glycoalbumin (GA)	<16.5%	The glycoalbumin test is a test for diabetes. The level decreases when the blood glucose level keeps low for about two weeks, but increases when the blood glucose level keeps high. Even though the level is within the standard value, it requires careful attention when the level is over 15.6%.
γ-GTP	9-68 (IU/L)	$\gamma\text{-GTP}$ is an enzyme found in large quantities in the liver, bile duct, pancreas, and kidneys. An elevated level of $\gamma\text{-GTP}$ in the blood is an indicator of diseases such as obstructive jaundice, hepatitis, and alcoholic hepatopathy. Even if no disease is present, long-term drinkers of alcohol often have an elevated lever of $\gamma\text{-GTP}$, which is normalized to some extent after one month's abstinence from alcohol.
Total protein (TP)	6.6-8.2 (g/dL)	The serum contains over 80 different kinds of protein, which have different functions and play important life-supporting roles. The level of total protein represents the combined levels of all proteins.
Albumin (ALB)	4.0-5.1 (g/dL)	Since the level of albumin, which accounts for 50% or more of all proteins contained in the serum, falls in cases of malnutrition resulting from disease, it is a useful index in medical screening.
Albumin/globulin ratio (A/G ratio)	1.3-2.1	Serum protein is categorized into albumin (A) and globulin (G). In a healthy person, the ratio between these two proteins falls within a given range, whereas it might deviate from this range (usually falling below it) in the presence of disease.
Total cholesterol (CHOL) 140-259 (mg/dL)		Levels of cholesterol, a serum fat, are usually higher in people who adhere to a fatty diet over a long period of time. Since cholesterol is produced in the liver, the serum level of cholesterol might change due to diseases of the liver, of the bile duct, of the kidneys, or of the thyroid. It is reported that elevated levels of serum cholesterol can cause arteriosclerosis.

生化学検査 (ABO 式・Rh 式血液型と合わせて希望のあった全献血者に通知)

検査項目	基準値(単位)	説明
ALT (GPT)	8-49 (IU/L)	肝臓に最も多く含まれる酵素。肝細胞が破壊されると血液中に流れ出すので、 急性肝炎で最も強く上昇し、慢性肝炎や脂肪肝(肥満)などでも上昇する。 激しい運動の後に一過性の上昇がみられることがある。
グリコアルブミン	<16.5%	糖尿病の検査のひとつ。過去約 2 週間の血糖値が低い状態が続いていると低下し、高い状態が続いていると上昇する。糖尿病では標準値より上昇する。標準値範囲内でも 15.6%以上の場合は注意が必要である。
y -GTP	9-68 (IU/L)	肝、胆道、膵、腎などに多く含まれる酵素。上昇する疾患は閉塞性黄疸、肝炎、 アルコール性肝障害など、病気がなくても長期飲酒者では上昇することが多 く、1ヵ月くらい禁酒するとある程度正常化する。
総蛋白	6.6-8.2 (g/dL)	血清中には 80 種類以上の蛋白が含まれ、種々の機能を持ち、生命維持に大きな役割を果たしている。その総量を総蛋白として測定している。
アルブミン	4.0-5.1 (g/dL)	血清蛋白の 50%以上を占めるアルブミンは、病気などで栄養が悪くなると減少するため、健康診断のスクリーニングとして大きな意味がある。
アルブミン対 グロブリン比	1.3-2.1	血清蛋白はアルブミン(A)とグロブリン(G)に分けられ、その比率は健康な人では一定の範囲にあるが、病気によってはその比率が変化(主として減少)してくる。
総コレステロール	140-259 (mg/dL)	血清脂肪の一つで、一般に脂肪の多い食事を続けると上昇する。また肝臓などで作られ、肝、胆道、腎、甲状腺の病気でその値が上下することがある。 血清コレステロールが多くなると動脈硬化を起こしやすいとされている。

Hematological Tests (The results of hematological tests are sent to all donors on request.)

Test	Standard Value	Explanation
Red Blood Cell Count (RBC)	Males:418-560 Females:384-504 (x10 ⁴ / _µ L)	Red blood cells are the main cellular components of blood. They transport oxygen from the lungs to various tissues.
Hemoglobin (Hb)	Males:12.7-17.0 Females:11.0-14.8 (g/dL)	The hemoglobin in erythrocytes gives blood its red color. It plays the central role in the functioning of red blood cells.
Hematocrit (Ht)	Males:38.8-50.0 Females:34.6-44.6 (%)	The hematocrit shows, as a percentage, the volume of red blood cells in a given volume of blood.
Mean Corpuscular Volume (MCV)	83.0-99.5 (fL)	The MCV denotes the average volume, i.e., size, of a single erythrocyte. It is calculated from the RBC and Ht.
Mean Corpuscular Hemoglobin (MCH)	26.8-33.5 (pg)	The MCH denotes the average hemoglobin content of a single red blood cell. It is calculated from the RBC and Hb.
Mean Corpuscular Hemoglobin Concentration (MCHC)	31.7-35.2 (%)	The MCHC shows, as a percentage, the hemoglobin content of a given volume of red blood cells. It is calculated from the Hb and Ht.
White Blood Cell Count (WBC)	38-89 (x10²/μL)	White blood cells serve to defend the body by phagocytosing bacteria and other pathogens, transmitting immune information, and expressing immunocompetence. The WBC generally increases when an individual has a bacterial infection and sometimes decreases with viral infections.
Platelet Count (PLT)	17.0-36.5 (x10 ⁴ / _μ L)	Platelets serve a vital function in hemostasis. There is an increased tendency toward hemorrhaging when this value is markedly decreased.

血球計数検査(希望のあった全献血者に通知)

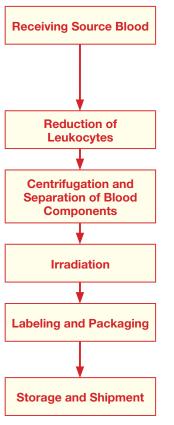
検査項目	基準値(単位)	説明			
赤血球数	男性 :418-560 女性 :384-504 (×10 ⁴ / μL)	赤血球は血液の主な細胞成分で、酸素を肺から各組織へ運ぶ働きをもっている。			
ヘモグロビン量	男性 :12.7-17.0 女性 :11.0-14.8 (g/dL)	血液の赤い色は赤血球に含まれるヘモグロビン(血色素)によるもので、赤血球の働きの中心となっている。			
ヘマトクリット値	男性 :38.8-50.0 女性 :34.6-44.6 (%)	ヘマトクリット値は一定の血液量に対する赤血球の割合(容積)をパーセントで表したもの。			
平均赤血球容積	83.0-99.5 (fL)	赤血球 1 個の平均的容積、すなわち赤血球の大きさの指標となるもので、赤血球数と ヘマトクリット値から算出したもの。			
平均赤血球 ヘモグロビン量	26.8-33.5 (pg)	赤血球 1 個に含まれるヘモグロビン量を平均的に表したもので、赤血球数とヘモグロビン量から算出したもの。			
平均赤血球 ヘモグロビン濃度	31.7-35.2 (%)	赤血球の一定容積に対するヘモグロビン量の比をパーセントで表したもので、ヘモグロビン量とヘマトクリット値から算出したもの。			
白血球数	38-89 (×10²/µL)	白血球は細菌などを貪食し、免疫情報を伝達し、さらに免疫能を発現して生態防御に関わっている。細菌感染症があると一般に白血球数は増加するが、ウイルス感染症の場合はかえって減少することもある。			
血小板数	17.0-36.5 (× 10 ⁴ / μ L)	血小板は出血を止めるための重要な働きを持ち、この値が極端に減少すると出血を起 こしやすくなる。			

A Confidential letter of test results 検査成績通知票

9. Production of Blood for **Transfusion**

The Preparation Department is in charge of producing blood products for transfusion from donated blood. Approximately 70% of all donated blood is whole blood, most of which is made into products through centrifugal separation of plasma and red blood cells. There are 12 manufacturing sites in Japan. Automation devices have been used in the steps of acceptance of donated blood, labeling, packaging, etc. in most of the manufacturing sites. In order to reduce adverse reactions of transfusion due to white blood cells, most white blood cells are removed from blood during the production process. In addition, in order to prevent post-transfusion Graft-Versus-Host Diseases (GVHD), one of the serious adverse reactions, blood products are irradiated (X-ray).

Reduction of Leukocytes


9. 製剤業務

製剤部門は、献血された血液から輸血用血液製剤を製造す る業務を行っている。献血の約70%は全血採血であり、多 くの血液は遠心分離によって血漿成分と赤血球成分に分離さ れて製品となる。全国に12か所の製造所があり、多くの 製造所では原料血液受入、ラベリング及び包装などの工程に 自動化機器が導入されている。白血球に起因する輸血副作用 軽減等のために、製造工程中に血液中の白血球の大部分の除 去を行っている。また、重篤な副作用である輸血後 GVHD (Graft-Versus-Host Diseases) 予防のために、血液製剤 への放射線照射(X線)を行っている。

Separation of Blood Components

Production Process

- Blood units delivered from various donation sites are accepted upon confirmation of transportation conditions, the number of units and respective weight. Donation numbers and other information are entered into computers.
- With regards to platelets and plasma donated through apheresis devices, conformity with product specifications is confirmed.
- With regards to whole blood, most of the leukocytes are removed using a leukocyte reduction filter.
- Blood is separated into red blood cells and plasma using a centrifuge.
- The centrifuged blood is prepared into plasma products and red blood-cell products, using an automated blood separator.
- · Red blood cells and platelets are irradiated (X-ray).

- Conformity with product specifications is confirmed, through appearance and capacity
- Labels are attached to products, and products are put into packaging bags.
- Red blood cells are refrigerated at 2 to 6°C and plasma is frozen at -20°C or below. Platelets are agitated at room temperature (20 to 24°C) for temporary storage.
- Blood products are shipped to the Supply Department, after confirming conformity through computerized reference to test results.

製造工程

- 各献血会場で採血された血液を、輸送状態、本数、容 量を確認して採血番号などの情報をコンピュータに入
- 成分採血装置で採血された血小板及び血漿は、製品規 格に適合しているかを確認する。
- ・ 全血採血された血液に対し、白血球除去フィルターに より、大部分の白血球を除去する。
- ・ 遠心分離機により、赤血球と血漿に分離する。
- 遠心分離された血液を、血液自動分離装置によって、 血漿製剤と赤血球製剤に調製する。
- 赤血球製剤と血小板製剤に X 線を照射する。
- 外観検査、容量検査を行い、製品規格に適合している か確認する。
- ラベルを貼り、包装袋に入れる。
- 赤血球製剤は冷蔵 (2 ~ 6℃)、血漿は冷凍 (- 20℃ 以下)及び血小板製剤は室温(20~24℃)で振盪し て一時保管する。
- 各血液製剤は、コンピュータで検査結果を照合し、適 合した製品を供給部門へ出荷する。

Types of Blood Products for Transfusion

As of March, 2017

Type of Product	Trade Name	Shelf Life*1	Storage Temperature			
Whole Blood Products	Whole Blood, Leukocytes Reduced, NISSEKI	O1 days ofter collection	2 ∼ 6°C			
Whole Blood Products	Irradiated Whole Blood, Leukocytes Reduced, NISSEKI	21 days after collection	2~60			
	Red blood cells					
	Red Blood Cells, Leukocytes Reduced, NISSEKI	21 days after collection				
	Irradiated Red Blood Cells, Leukocytes Reduced, NISSEKI	21 days after collection				
	Washed Red Cells, Leukocytes Reduced, NISSEKI	48 hours after processing				
	Irradiated Washed Red Cells, Leukocytes Reduced, NISSEKI	40 flours after processing				
	Frozen Thawed Red Cells, Leukocytes Reduced, NISSEKI		2 ∼ 6°C			
	Irradiated Frozen Thawed Red Cells, Leukocytes Reduced, NISSEKI	4 days after processing				
	Blood for Exchange Transfusion, Leukocytes Reduced, NISSEKI					
	Irradiated Blood for Exchange Transfusion, Leukocytes Reduced, NISSEKI	48 hours after processing				
Blood Component	Plasma					
Products	Fresh Frozen Plasma, Leukocytes Reduced, NISSEKI 120		≦ -20°C			
	Fresh Frozen Plasma, Leukocytes Reduced, NISSEKI 240	1 year after collection				
	Fresh Frozen Plasma, Leukocytes Reduced, NISSEKI 480					
	Platelet					
	Platelet Concentrate, Leukocytes Reduced, NISSEKI					
	Irradiated Platelet Concentrate, Leukocytes Reduced, NISSEKI		20 ∼ 24°C			
	Platelet Concentrate HLA, Leukocytes Reduced, NISSEKI	4 days after collection				
	Irradiated Platelet Concentrate HLA, Leukocytes Reduced, NISSEKI					
	Irradiated Washed Platelet Concentrate, Leukocytes Reduced, NISSEKI *2	48 hours after processing and				
	Irradiated Washed Platelet Concentrate HLA, Leukocytes Reduced, NISSEKI *2	within 4 days after collection				

^{*}Note: *1 In Japan blood collection date is counted as the day 1 of a shelf life. *2 supply from September 2016.

輸血用血液製剤の種類

2017年 (平成 29年) 3月現在

製剤の種類	販売名	有効期間* 1	保存温度	
全血製剤	人全血液 - LR「日赤」	· 採血後 21 日間	2∼6℃	
主皿衣用	照射人全血液 - LR「日赤」		2.000	
	赤血球製剤			
	赤血球液 - LR「日赤」	・採血後 21 日間		
	照射赤血球液 - LR「日赤」	外皿反 乙二二四		
	洗浄赤血球液 - LR「日赤」	- 製造後 48 時間		
	照射洗浄赤血球液 - LR「日赤」	A.E.C. 10 1910	2~6℃	
	解凍赤血球液 - LR「日赤」	製造後 4 日間		
	照射解凍赤血球液 - LR「日赤」			
	合成血液 - LR「日赤」	製造後 48 時間		
	照射合成血液 - LR「日赤」			
成分製剤	血漿製剤	l .	ı	
	新鮮凍結血漿 - LR「日赤」120		≦ -20℃	
	新鮮凍結血漿 - LR「日赤」240	採血後 1 年間		
	新鮮凍結血漿 - LR「日赤」480			
	血小板製剤			
	濃厚血小板 - LR「日赤」		20 ~ 24℃	
	照射濃厚血小板 - LR「日赤」	採血後 4 日間		
	濃厚血小板 HLA - LR 「日赤」			
	照射濃厚血小板 HLA - LR 「日赤」			
	照射洗浄血小板 -LR「日赤」*2	製造後48時間(ただし、採血		
	照射洗浄血小板 HLA-LR「日赤」*2	後4日間を超えない)		

注釈 *1 日本では、採血日が有効期間の一日目となる。 *2 2016年9月から供給を開始した。

10. Distribution

10.1 Distribution System

Blood products for transfusion that are managed at blood centers are stored in accordance with conditions appropriate to each product. The blood is later supplied to medical institutions in accordance with orders received. In Japan, there is no system that limits the number of specified medical institutions licensed to provide blood transfusions. Rather, if there is a request for a certain blood product from any medical institution, the product is supplied. As a result, blood products are supplied to many medical institutions. The blood centers have endeavored to provide a supply system through which it is possible to respond to requests from medical institutions at any time, day or night. To prepare for possible emergencies, efforts are also made to always keep a certain minimum stock of blood products on hand.

10.2 Delivery to Medical Institutions

While the blood products for transfusion are basically delivered directly to medical institutions by blood center employees, they are also delivered by pharmaceutical product wholesalers, or by foundations specializing in delivery services that work on a consignment basis -- in the form of either delivery consignment or supply consignment -- depending on regional circumstances. Delivery consignment means that a blood center receives an order and hands over some of its stock of blood products to the consignment company, which then transports and delivers the products to the medical institution that placed the order. Supply consignment means that companies that have signed consignment contracts in advance routinely keep an inventory of blood products received from blood centers on hold. The system is set up in such a way that these companies receive orders directly from medical institutions to take specified blood products from their inventories before delivering them to medical institutions.

Delivery consignment companies must be licensed as carriers, and supply consignment companies must be licensed as wholesale distributors for pharmaceutical products.

There are certain stockpiling bases, which in cooperation with specified medical institutions, have set up emergency-store medical depots beforehand. The result is that a certain quantity of blood products for transfusion is available in times of emergency to nearby medical institutions to better cope with cases where more than the usual amount of time is needed to supply these products. For example, such a need might arise in the case of small islands separated from the Japanese mainland or other remote areas.

10. 供給業務

10.1 供給業務

血液センターにおいて管理する輸血用血液製剤は、製剤ごとに適切な条件で保管され、医療機関からの発注に基づき供給される。日本には輸血認定医療機関の制度がなく医療機関から要請があれば全て供給するため、血液製剤を供給する医療機関は数多い。血液センターでは、医療機関からの要請にいつでも応じられるように 24 時間対応可能な供給体制を敷くとともに、非常時に備え常に一定量の在庫確保に努めている。

10.2 医療機関までの供給

医療機関への輸血用血液製剤の供給については、血液センター職員が直接医療機関に供給する体制を基本としている。しかしながら、地域事情等により委託(配送業務委託又は供給業務委託)を受けた専門の財団法人や医薬品卸売業者等が配送又は供給を行っている場合がある。「配送業務委託」とは、血液センターが受注・出庫した製剤を委託業者へ引き渡し、業者が医療機関に届ける体制であり、「供給業務委託」とは委託契約を結んでいる業者自らが血液センターから引き渡された血液製剤を保管し、業者が医療機関からの発注を直接受け、医療機関に届ける体制である。

なお、配送委託業者は、運送業の資格を有している必要が あり、供給委託業者は医薬品卸売販売業の資格を有している 必要がある。

また、地理的要因(離島、遠隔地等)等により、供給に時間を要する場合に備え、予め特定の医療機関の協力を得て輸血用血液製剤を一定量保管し、緊急時に近隣医療機関へ融通する「備蓄医療機関」を設けている血液センターもある。

10.3 Supply-and-Demand Control

With regard to the inventory of blood products in each blood center, it is necessary to prevent overages and shortages caused by a temporary decrease in donors, a blood type imbalance in the blood products for transfusion supplied, and other factors. Therefore, the supply and demand of blood products for transfusion are managed within each of the seven regional blocks across Japan so as to achieve a good supply-and-demand balance in each block, with the block blood center of each block at their hub. When it is difficult to achieve balance within the block, block blood centers exchange blood products for transfusion among them in order to achieve more stable supply and effective use of the products. Such exchange of blood products for transfusion across blocks is called "supply-and-demand control."

This supply-and-demand control system enables delivery of required blood products for transfusion to anywhere across Japan.

A Blood-Delivery Vehicle

10.3 需給管理及び需給調整

各血液センターの血液製剤の在庫については、一時的な献血者の減少や供給される輸血用血液製剤の血液型の偏りなどによる過不足が生じないよう、全国 7 カ所に設置したブロック血液センターを中心に、ブロックを単位とした需給管理を行い、輸血用血液製剤の需給バランスを調整している。なお、ブロック内で調整が困難な場合は、ブロック間で輸血用血液製剤の受け渡しを行うことにより、より一層の安定供給と有効活用を図っており、このブロックを越えた受け渡しを需給調整という。

このシステムにより、日本全国どこでも必要な輸血用血液 製剤を届けられるようになっている。

Leaflets for Medical Information

11. Medical Information

Under the PMD Act, entities licensed as marketing authorization holders must endeavor to collect and evaluate information concerning the efficacy and safety of drugs and other information for appropriate use. Such entities must supply pharmacies, hospitals, clinics, drug sellers, physicians, pharmacists and other medical professionals with this information.

Personnel in charge of medical information (Medical Representatives: MRs) in each blood center are responsible for the provision and collection of information on blood products to medical professionals who use or deal with blood products. This is done through using information media, holding explanatory meetings and other measures. Another important aspect of MR activities is to respond to information reports regarding adverse reactions, complaints and inquiries from medical professionals.

11. 医薬情報業務

医薬品医療機器等法で、医薬品の製造販売業者は、医薬品の有効性及び安全性に関する事項、その他医薬品の適正な使用のために必要な情報を収集し検討するとともに、薬局開設者、病院、診療所の開設者、医薬品の販売業者、医師、薬剤師その他の医療関係者に対して提供するように努めなければならないと規定されている。

血液製剤を使用する医療関係者へ情報提供、収集を行う業務は、各血液センターに所属している医薬情報担当者(MR: Medical Representative)が担っている。具体的には各種情報媒体を用いたり、説明会を開催するなどして血液製剤に関する種々の情報提供、収集を行っている。また、医療関係者からの副作用報告、苦情、問い合わせに対応することも重要な業務となっている。

12. Quality Control

Based on the PMD Act, the Ministerial Ordinance on Regulations for Manufacturing Control and Quality Control of Drugs and the Minimum Requirements for Biological Products, the following procedures are conducted to offer better quality-control of blood products for transfusion as pharmaceutical products.

- Acceptance Inspection of Raw Materials, related issues and reagents;
 We conduct acceptance inspections on raw materials, reagents and other materials, excluding blood, such as blood bags to confirm their quality.
- We perform a comprehensive determination and confirmation of results of quality-control-related tests, including the testing of donated blood.
- Counting of residual leukocytes in blood components;
 Counting of residual leukocytes in blood components is conducted to ensure the residual leukocyte counts of final products.
- Inspection of product specifications for all products;
 An appearance test and condition test are conducted for final products to verify whether the final products meet product specifications.
- Product specification test (sampling)
 The Japanese Red Cross Society (JRCS) conducts a sampling test of final products to confirm product specifications.

13. Quality Assurance

In keeping with revisions to the Pharmaceutical Affairs Law that went into effect in April 2005, the Japanese Red Cross Society (JRCS) is licensed as a marketing authorization holder for pharmaceutical products. In this capacity, it carries out quality assurance operations and safety vigilance operations. Such operations ensure the high quality of these products as well as quality assurance aimed at ensuring safety, following the manufacture and marketing of blood products for transfusion manufactured at the blood centers.

The task of quality assurance is carried out in conformance with the Good Quality Practice (GQP) guidelines established by the national government. This involves such responsibilities as supervision of the release of manufactured products to markets, supervision of any changes in methods of manufacturing or testing and responding to information on product quality. It also involves the withdrawal of any defective products, as well as checking compliance with GMP standards on the part of the blood centers.

Confirmation of compliance with the GMP standards primarily involves on-the-spot checks of quality-control conditions and manufacturing supervision at the blood centers, which have been licensed as manufacturers of pharmaceutical products, while pointing out any problem areas in this process that need improvement.

12. 品質管理業務

「医薬品医療機器等法」、「医薬品の製造管理及び品質管理規則」(医薬品 GMP)、「生物学的製剤基準」等に基づいて「医薬品としての輸血用血液製剤」の品質を維持するために、次の業務を行っている。

- 原料・資材及び試薬の受入試験 原料となる血液以外の原料・資材(血液バッグ等)及び 試薬について受入試験を行い、品質を確認している。
- 原料となる血液の試験も含めた、品質管理にかかる試験結果の総合判定及び確認を行っている。
- ・ 白血球数試験 最終製品の白血球数を保証するために白血球数試験を 行っている。
- 製品規格試験(全数) 最終製品に対して性状及び外観試験を実施し、製品規格 を確認している。
- ・ 製品規格試験(抜取) 最終的に調製された製品に対して抜取試験を実施し、製品規格を確認している。

13. 品質保証業務

日本赤十字社は、薬事法の改正により 2005 年(平成 17年) 4月から医薬品の製造販売業の許可を取得した。そのため、製造販売業者として、血液センターが製造した輸血用血液製剤について、品質を確保するための品質保証業務及び製造販売後の安全を確保するための安全管理業務を実施している。

品質保証業務は、国が定めた GQP (Good Quality Practice) に基づいて行うもので、製品の市場への出荷に関する管理、製造方法・検査方法等の変更の管理、製品の品質に関する情報への対応、品質不良の製品の回収、血液センターの GMP の適合性確認などがある。

GMPの適合性確認とは、主に医薬品製造業の許可を取得した血液センターにおける製造管理・品質管理の状況を実地に確認し、問題点の改善を指導するものである。

14. Safety Vigilance

The activity of post-marketing safety management of blood products is carried out in accordance with Good Vigilance Practice (GVP) established by the Ministry of Health, Labour and Welfare. Its aim is to verify and enhance the safety of blood products.

The safety management includes collecting and providing information on the safety, efficacy and quality of blood products that are manufactured and marketed. Major types of information collected are case reports from medical institutions on adverse reactions or infections in patients who have received blood transfusions. Severe cases must be reported to the Minister of Health, Labour and Welfare via the Pharmaceuticals and Medical Devices Agency (PMDA). The adverse reactions include fever, urticaria, anaphylactic shock and Transfusion Related Acute Lung Injury (TRALI). Transfusion transmitted infection includes suspected cases of HBV, HCV, or bacterial infection. The system of transfusion adverse reactions / infections reporting has two routes: from healthcare professionals to either the Red Cross Blood Center or directly to the Minister of Health, Labour and Welfare.

If a blood donor who tested positive for an infection has a previous record of blood donations, blood components for transfusion made from previously collected blood might have already been supplied to medical institutions. In these cases, if there is a possible risk of infection from such blood components, these components will be withdrawn if they have not been used yet. As well as the withdrawal, testing for infection is conducted for confirmation using the stored blood samples of relevant donations. In the case the relevant components for transfusion have already been used, information of infectious risk is provided to the medical institution to help in the early detection and treatment of transfusion transmitted infectious disease. These activities are called look-back studies. The look-back studies are handled according to the "Guidelines for Look-back Studies on Blood Products," which was established by the Blood and Blood Products Division in the Pharmaceutical and Food Safety Bureau of the Ministry of Health Labour and Welfare in April 2005 (partially revised in July 2014).

To carry out look-back studies and other investigations on post-transfusion infections and also to evaluate the safety of blood components for transfusion, keeping frozen specimens for 11 years is an effective practice at present.

As an obligation of a marketing authorization holder, the Japanese Red Cross Society (JRCS) collects the information on research papers and measures taken in other countries concerning blood products for transfusion. Also marketing authorization holders of biological products are requested to collect the latest domestic and foreign research papers on infections due to biologics or related materials. Research papers and information evaluated as important are reported to the Minister of Health, Labour and Welfare via PMDA as the reports on measures in foreign countries, reports of studies and the periodic infection reports for biological products in accordance with the PMD Act.

14. 安全管理業務

製造販売後の安全管理に係る業務は、厚生労働省の GVP (Good Vigilance Practice) 省令に基づき血液製剤の安全性の検証と向上に資するために行っている。

安全管理業務の一つとして、製造販売している血液製剤に関する安全性、有効性及び品質に係る情報の収集・提供がある。主な情報収集には医療機関から輸血医療を受けた患者の副作用・感染症報告があり、重篤な症例については、独立行政法人医薬品医療機器総合機構 (PMDA: Pharmaceuticals and Medical Devices Agency) を通じ、厚生労働大臣へ報告することとなっている。副作用としては発熱、蕁麻疹、アナフィラキシーショックや輸血関連急性肺障害(TRALI: Transfusion Related Acute Lung Injury)があり、感染症報告には HBV、HCV や細菌感染等の疑い報告がある。副作用・感染症報告制度は医療関係者が赤十字血液センターに報告するルートと直接厚生労働大臣へ報告するルートがある。

また、献血血液の感染症検査で陽性となった献血者に過去の献血歴がある場合、過去の輸血用血液製剤が医療機関へ既に供給されていることがある。過去の血液製剤による感染リスクが考えられる場合には、献血血液の保管検体を用いて感染症検査を実施し、輸血用血液製剤が使用されていなければ回収する。既に使用されていた場合には、医療機関に情報を提供し、輸血後感染症の早期発見・早期治療に役立てる。これを遡及調査という。この調査は、2005年(平成17年)4月に厚生労働省医薬食品局血液対策課が制定(2014年(平成26年)7月、一部改正)した「血液製剤等にかかる遡及調査ガイドライン」に基づき対応している。

遡及調査や輸血後感染症に係る調査を実施するために、さらには輸血用血液製剤の安全性の検証を行う上でも、11年間冷凍保管される保管検体は有用である。

また、医薬品製造販売業者の義務として、輸血用血液製剤に関連する外国の措置情報や研究論文の収集を行っている。さらに、生物由来製品の製造販売業者として、製品及び原料に由来する感染症に関する国内外の最新論文の収集を行い、重要と評価された論文や情報については医薬品医療機器等法に基づき感染症定期報告として PMDA を通して厚生労働大臣へ提出している。

This safety information is reviewed and evaluated by the review committee comprising doctors and other experts in blood services and/or transfusion medicine when necessary. We subsequently provide the information on our website and in printed form in order to contribute to safer transfusion medicine. In addition, the information is reported at the Committee on Safety of Drugs and the Committee on Blood Products of the Pharmaceutical Affairs and Food Sanitation Council.

When the safety vigilance system described above is implemented for the blood program, it is called hemovigilance. Hemovigilance is defined as a set of surveillance procedures to identify and prevent the occurrence or recurrence of undesirable transfusion-related events in order to increase the safety, efficacy and efficiency of blood transfusion covering all activities of the transfusion chain from donor to recipient. JRCS participates in the National Haemovigilance Council along with the National Institute of Infectious Diseases and the blood services departments of major university hospitals. We have been a member of the International Haemovigilance Network since 2008, to exchange information with other members.

これらの安全管理情報は、必要に応じて血液事業、輸血医療に関わる医師や有識者で構成する検討委員会で検討、評価され、その後はホームページ上や印刷物で公表し、安全な輸血医療に寄与している。またこれらの情報は、薬事・食品衛生審議会医薬品等安全対策部会や血液事業部会に報告される。

上記の安全監視システムを血液事業に適用したものがへモビジランスである。ヘモビジランスとは、輸血に関連する望ましくない事象を特定し発生を防止すること、また、輸血の安全性、有効性及び効率性の向上を目的に、献血者から輸血を受ける患者までの輸血連鎖における全ての活動を一連のものとして監視する手順、と定義される。日本赤十字社は、国立感染症研究所や主要な大学病院輸血部とともに国内のヘモビジランス会議に参加し、また2008年(平成20年)から国際ヘモビジランスネットワークにも加盟して情報交換に努めている。

15. Nationwide Unified IT System

With respect to the Japanese Red Cross Society's (JRCS's) use of computer systems in blood services, the Second Stage Unified System for Blood Service Data was put into operation in 2004 to realize the unification of data and system operations, following the First Stage Unified System for Blood Service Data introduced in 1994.

In 2014, the Information System for Blood Service Data was introduced as the Third Stage System for Blood Service Data. The system has been supporting general operations of seven block blood centers and 47 blood centers, etc. across Japan.

The Information System for Blood Service Data is a centralized system based on a server client method, which processes the acceptance of donors at regional blood centers, production, testing, quality control, and delivery to medical institutions, as well as accounting, procurement, and other wide-ranging support services with the use of servers and other peripheral equipment installed at data centers with robust security and advanced quake-proof performance, located in Kanagawa, Okayama, and Hokkaido.

The three hub data centers can exchange their roles flexibly and complementarily. Therefore, even if one of the centers needs to be shut down due to a disaster, failure, planned maintenance, etc., the two other centers constantly provide back up to assure system robustness and the operation of a 24-hour service 365 days a year.

For realization of the Information System for Blood Service Data, the system configuration combines package software programs that function in cooperation and are widely used inside or outside of Japan by pharmaceutical manufacturers/marketers, finance sectors, etc. in the fields of individual operations. The most advantageous point of the use of package software products is that the products are used by many companies and thus the quality of the products is stable.

Note that since there are no existing package software products for blood donation/collection functions, software was obtained by scratch (individual) development.

The Information System for Blood Service Data was introduced and includes touch panel operation of all processes including application for blood donation, donor interview, and nursing staff's work upon the acceptance of donors. This makes it possible to prevent insufficient filling in of questionnaire/examination records and incorrect input and realize paperless documentation. In addition, JRCS introduced LTE routers capable of high-speed communication for mobile blood collection and realized speedy blood donation acceptance.

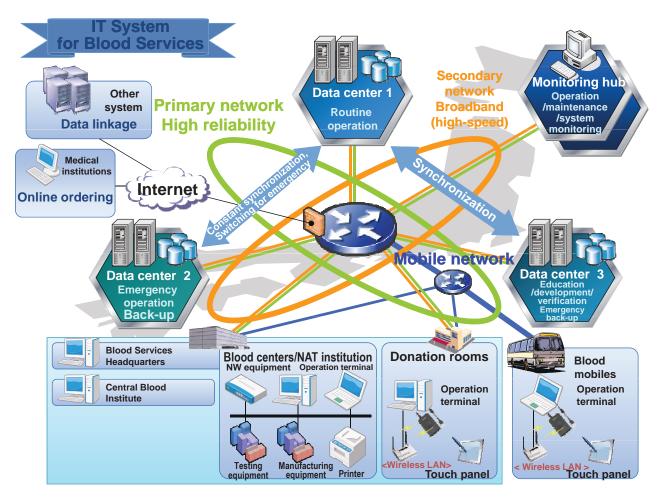
Further, the function of acceptance of orders from medical institutions via the Internet (online acceptance) has been used to prevent the incorrect acceptance of orders and improved work efficiency has been achieved through computerization of operations that were performed on a "paper" basis in other operational fields.

15. 情報システム

日本赤十字社の血液事業におけるコンピュータシステムの利用は、1994年(平成6年)に導入した第一次血液事業統一システムに始まり、2004年(平成16年)にはデータ及びシステム運用の一元化を実現した第二次血液事業統一システムの運用を開始した。

2014年(平成26年)からは第三次血液事業システムとなる血液事業情報システムの稼働を開始し、全国7カ所のブロック血液センター、47カ所の地域血液センター等の事業運営全般を支えている。

血液事業情報システムは、サーバクライアント方式による 集中管理型のシステムであり、サーバ機器類の設置場所として、強固なセキュリティと高度な耐震性能を備えたデータセンター(国内3拠点:神奈川県、岡山県、北海道)を利用し、各血液センターの献血者の受入から製造、検査、品質管理、医療機関への供給、更には経理、用度におよぶ広範囲の業務を行っている。


データセンターを3拠点とすることにより、各拠点が相補的かつ柔軟に相互の役割を入れ替えられることから、災害や障害、保守による計画停止などで1拠点のシステムを止めることになっても、常に2拠点によるバックアップ体制を維持でき、24時間365日の稼働およびシステムの堅牢性を実現している。

血液事業情報システムの実現方法として、業務分野ごとに広く国内外で医薬品製造業・販売業・財務などで使用されているパッケージソフトを組み合わせ、連携することにより全体のシステムを構成している。パッケージソフト採用の最大のメリットは多くの企業に採用され品質が安定していることである。

なお、献血・採血機能については、既成のパッケージソフトが存在しないため、スクラッチ(個別)開発としている。

血液事業情報システムの特徴として、献血者の受入においては、献血の申し込みから問診、看護師の作業の全てをタッチパネルの操作で行うことで、問診・診療録への申告漏れや入力ミス等の防止、ペーパーレス化を実現している。また、移動採血業務において、高速通信が可能なLTEルーターを導入し、よりスピーディーな献血受入業務を実現している。

さらに、医療機関からの発注情報についてはインターネットを介して受注する機能(オンライン受注)を使用し、受注 過誤防止と作業効率の向上を図ると共に、その他の業務分野 においても「紙」を基本に行っていた業務を電子化すること で作業の効率化を実現している。

[Information System for Blood Service Data]

16. Research and Development

In 2004, the Central Blood Institute was established within the Blood Service Headquarters in order to supervise, enhance and strengthen the safety measures for blood services and the blood-related research and development. In 2009, with the aim of enhancing research on infectious diseases, the Infectious Disease Research Department was set up within the Institute. Further, in order to study and resolve technical problems concerning blood examinations and preparation of blood products, the Laboratory Development Division and the Preparation Development Division were established within three block blood centers in 2012.

Through the blood program research conducted to date, we have achieved improvement in the quality of blood products, extension of the expiration date and improvement of the sensitivity and specificity of screening tests. To prevent transfusion-associated Graft-Vs-Host Diseases (GVHD), we have started to distribute irradiated blood products. Meanwhile, in order to prevent transfusionrelated anaphylactic shock caused by a deficiency of plasma proteins, we have begun to secure blood products with a plasma protein deficiency. In addition, we are developing testing methods for preventing transfusionrelated acute lung injuries (TRALI). We have developed additive solutions and washing methods that are capable of preparing high-quality washed platelets, and obtained approval for manufacturing and marketing of washed platelet products by the Ministry of Health, Labour and Welfare in 2016, and released them in September.

We have also started basic research on iPS cell technology, with an eye to applying the technology to the preparation of blood cells that are necessary for the blood test and to production of blood products. As in the case of HLA, we are conducting the development of highly sensitive platelet antigen-antibody testing methods for detecting an antigen-antibody mismatch that may render patients refractory for platelet transfusion.

We analyze the causal relationship between infectious diseases developed after transfusion and the blood products so as to contribute to identifying the actual status of and preventing transfusion-transmitted diseases. In addition, we are developing new testing methods in order to be able to deal with infectious diseases such as foreign infectious diseases and tick-borne infectious diseases. We confirmed that nucleic acid amplification methods allow highly-sensitive detection of HTLV-1 infection and therefore, we are studying the applied use of the methods to testing.

The medium- and long-term goals for blood services research are: 1) improvement of efficacy of blood for transfusion, 2) reduction of transfusion-related adverse reactions, 3) development of novel blood products, 4) improvement of usage and production efficiency of donated blood, 5) improvement of blood test accuracy and efficiency and 6) reduction of adverse reactions to blood donation. To achieve these goals, enhancement of research framework of blood program by reconstruction of organization for research and redeployment for enlarge of research facilities are scheduled.

16. 研究開発業務

血液事業の安全対策、血液に関する研究・開発を統括、充実強化するため、2004年(平成16年)に血液事業本部内に中央血液研究所が設置され、2009年(平成21年)には、感染症に関する研究を充実させるため、感染症解析部が増設された。2012年(平成24年)には、検査業務、製剤業務における技術的問題の検討・解決のため、3カ所のブロック血液センターに検査開発課、製剤開発課が設置された。

これまでの血液事業研究により、血液製剤の品質向上、それに伴う有効期限の延長、検査精度の向上が図られてきた。輸血後 GVHD 防止のため、放射線照射製剤が供給されるようになった。血漿タンパク欠損が原因で起こる輸血によるアナフィラキシーショックを防ぐため、血漿タンパク欠損製剤が確保されるようになった。また、輸血関連急性肺障害(TRALI)を防ぐための検査法の開発が進められている。高品質の洗浄血小板を調製できる保存液、洗浄方法を開発し、2016年(平成28年)に、洗浄血小板製剤の製造販売承認を取得し、9月に供給を開始した。

さらに、輸血用検査に必要な検査血球の作成や、血液製剤製造を念頭に iPS 細胞技術の基礎研究を開始している。 HLA と同様、その不適合が血小板輸血不応の原因となる血小板抗原 - 抗体の高感度検査法の開発も進めている。

輸血後の感染症と輸血製剤の因果関係を分析し、輸血感染症の実態の把握と予防に寄与するとともに、外来感染症やダニ媒介感染症など感染症にも対応できるよう、新しい検査法の開発も行っている。また、核酸増幅法により、HTLV-1感染の高感度検出ができることを確認し、検査への応用を検討している。

血液事業研究の中長期目標である、1)輸血用血液の有効性の向上、2)輸血副作用の軽減、3)新たな血液製剤の開発、4)血液の利用効率、製造効率の向上、5)検査精度及び検査効率の向上、6)採血副作用の軽減、を達成できるよう、研究体制を強化するため、研究組織の改編、研究施設の移転整備を計画している。

17. Hematopoietic Stem Cell Transplantation

Hematopoietic stem cell transplantations are transplantations using bone marrow, peripheral blood stem cells or umbilical cord blood, and they are effective and promising means of treatment for some types of leukaemia and severe cases of aplastic anaemia.

The human leukocyte antigens (HLA) of the donor and the recipient must be matched for hematopoietic stem cell transplantations to be successful. However, the chances of being HLA-identical are one in four even between siblings, and the chances are approximately one in several hundred to tens of thousands among nonrelatives. To perform bone marrow and peripheral blood stem cell transplantations we need a large registry of donor candidates, while to perform cord blood transplantations we need to collect and store qualifying cord blood in a cord blood bank. Both the donor registry and the cord blood bank are essential for hematopoietic stem cell transplantations.

There had been no regulation on organizations involved in hematopoietic stem cell provision in Japan. Responding to requests from those concerned, the Act for Appropriate Provision of Hematopoietic Stem Cells to be Used in Transplantations" (Act for HSCT) became fully effective on January 1st, 2014.

17.1 Hematopoietic Stem Cell Provision Support Organization

The Minister of Health, Labour and Welfare has designated the Japanese Red Cross Society (JRCS) as the Hematopoietic Stem Cell Provision Support Organization, according to the Act for HSCT. As such, JRCS shall perform the following activities:

- Register donor candidates for bone marrow and peripheral blood stem cells, and cooperate with other service providers involved in the provision of hematopoietic stem cells.
- 2) Liaise with and coordinate organizations involved in the provision of hematopoietic stem cells.
- 3) Manage and provide information related to hematopoietic stem cells for transplantations.
- 4) Disseminate information and raise awareness for providing hematopoietic stem cells for transplantation.

Moreover, JRCS collects samples from unrelated bone marrow and peripheral blood stem cell transplantation patients and donors, and provides them to researchers.

17. 造血幹細胞事業

造血幹細胞移植とは、血液の元となる造血幹細胞を含む骨髄・末梢血及び臍帯血移植を指し、一部の白血病や重症の再生不良性貧血に有効な治療法である。造血幹細胞移植は近年の治療成績の向上や高齢化に伴い、需要の向上が見込まれている。

造血幹細胞移植を行うためには、ドナーと移植を受ける 患者さんの HLA 型を一致させる必要がある。しかし、この HLA 型が一致する割合は血縁者間で 25%、非血縁者間で は数百万人〜数万人にひとりと言われている。したがって、 より多くの患者さんが移植を受けるためには、骨髄移植では より多くの骨髄提供希望者を募り登録する必要があり、臍帯 血移植ではより多くの品質が保証された臍帯血の保存が必要 となることから、骨髄バンク及び臍帯血バンクの活動が造血 幹細胞移植には必須である。

日本ではこれまで造血幹細胞移植に関する根拠となる法律が存在しなかったことから法制化への動きが強まり、2014年(平成26年)1月1日「移植に用いる造血幹細胞の適切な提供の推進に関する法律」が全面的に施行された。

17.1造血幹細胞提供支援機関事業

日本赤十字社は、法に定められる国内唯一の支援機関として厚生労働大臣より指定を受け、以下の業務を行うこととされている。

- 1) 骨髄・末梢血幹細胞提供ドナー登録その他造血幹細胞 提供関係事業者に対する協力
- 2) 造血幹細胞提供関係事業者間の連絡調整
- 3) 移植に用いる造血幹細胞に関する情報の一元的な管理・ 提供
- 4) 移植に用いる造血幹細胞の提供に関する普及啓発

また、非血縁者間骨髄・末梢血幹細胞移植の患者及びドナーの検体を収集し、研究者への分譲を行っている。

17.2 Bone Marrow Donor Registry and cord blood banks

The Japan Marrow Donor Program (JMDP, a public interest incorporated foundation) has been operating in cooperation with the Ministry of Health, Labour and Welfare, JRCS and each prefecture since 1992.

As a public agency with impartiality and a wide geographical jurisdiction, JRCS was appointed to work with the JMDP. JRCS had set up the Bone Marrow Data Centers, whose services have primarily been receiving applications for donor registration, providing HLA typing and managing the donor search system.

JRCS performs these services as the Hematopoietic Stem Cell Provision Support Organization responding to the enforcement of the Act for HSCT.

In 2016, the Bone Marrow Data Centers were renamed the Bone Marrow Donor Registry.

Cord blood is the blood in the baby's umbilical cord and placenta, and it is rich in stem cells. To be used in transplantations it should be processed and cryopreserved in cord blood banks. JRCS has established a cord blood bank in the block blood center of four of the seven regional blocks of Japan (Hokkaido, Kanto-Koshinetsu, Kinki, and Kyushu) and the Blood Service Headquarters is in charge of the management of the cord blood banks.

According to the Act for HSCT, each cord blood bank has been performing its services under the approval of the Minister of Health, Labour and Welfare from April 2014.

17.2 骨髄ドナー登録事業及び 臍帯血バンク事業

骨髄バンク事業は 1992年(平成4年)より国の主導の もと公益財団法人日本骨髄バンクが主体となり、日本赤十字 社及び各都道府県の協力により行われてきた。

日本赤十字社は、公平性、公共性及び広域性が保障される公的な機関として国からの依頼を受け、各血液センターに骨髄データセンターを設置し、骨髄提供希望者の登録受付、HLA型の検査、HLA適合対象者の検索などを行う骨髄データセンター業務への協力を行ってきた。

法施行を受け、造血幹細胞提供支援機関として骨髄データセンター業務を行うこととなった。

なお、平成 28 年度より骨髄データセンター事業の呼称を 廃止し、骨髄ドナー登録事業と改めた。

また、臍帯血とは胎盤とへその緒の中にある造血幹細胞を多く含んだ血液のことである。臍帯血を移植に用いるためには臍帯血バンクにて調製し凍結保存する必要がある。日本赤十字社は4カ所(北海道、関東甲信越、近畿、九州)のブロック血液センターに臍帯血バンクを設置し、血液事業本部にてその取りまとめを行っている。

法施行により、各臍帯血バンクは国の許可を受けた臍帯血供給事業者として事業を行うこととなった。

Cord Blood Bank Character, Kizuna-chan

18. Cooperation with Other Organizations

18.1 Autologous Transfusion

Autologous transfusion is a method whereby a patient's own blood, instead of some other person's, is collected, stored and used for transfusion when there is a definite transfusion plan, such as scheduled surgery and when blood collection is feasible. Autologous transfusion is advantageous in that it eliminates both the risk of infection through the transfusion of another person's blood and transfusion-related adverse reactions that might be caused by the recipient's immune reaction.

The Guidelines on Implementing Transfusion Medicine issued by the Ministry of Health, Labour and Welfare recommends that autologous transfusion be actively considered in cases of elective surgery in which the patient is in good preoperative condition and there is no emergency. Because of their technical processing experience, such as separation and freezing, thawing and washing and preservation of blood, the blood centers have been asked to cooperate, particularly in cases of autologous transfusion involving presurgical autologous blood donations. This is for situations when blood is collected preoperatively from a patient scheduled for surgery. Any blood center participation is in accordance with the judgment of the physician in charge.

The Japanese Red Cross Society (JRCS) cooperates to the extent possible with regard to autologous transfusions when so requested by medical institutions.

18.2 Plasma fractionation services

In order to achieve the goal of domestic self-sufficiency of blood products through voluntary non-remunerated blood donation, JRCS has manufactured and supplied a variety of plasma derivatives, including freeze-dried human blood coagulation factor VIII concentrates, at the Plasma Fractionation Center constructed in Chitose City, Hokkaido in June 1983. However, in October 2012, JRCS's plasma fractionation services and such services of Benesis Corporation were integrated to form the Japan Blood Products Organization (JB). Since then, these services have been carried out by JB.

Also after the handover of such services, the supply of the plasma derivatives manufactured at JB's Chitose Plant (former JRCS Plasma Fractionation Center) to medical institutions, promotion of the appropriate use of plasma derivatives, and dissemination of the use of such products derived from domestically donated blood so as to increase the domestic supply of such products, through its medical representatives in charge of pharmaceutical information, were continued under the commission from JB. However, this commission agreement was terminated as of March 31, 2015.

At present, JRCS secures source plasma according to the national plan for securing source plasma for plasma derivatives and sends plasma to the three domestic manufacturers of plasma derivatives. The manufacturers are producing blood products such as blood coagulation factor products, albumin products, and globulin products.

18. 他機関との協力事業

18.1自己血輸血

自己血輸血とは、手術など具体的に輸血の予定があり、採血が可能な場合に、あらかじめ自分の血液を採血・保管し、その血液を輸血に用いるなど、輸血に際して他の人の血液ではなく自分の血液を用いる輸血方法である。この自己血輸血には、他の人の血液を輸血することによって引き起こされる免疫反応による輸血副作用や輸血による感染症を防止できる利点がある。

厚生労働省の「輸血療法の実施に関する指針」の中でも術前状態が良好で緊急を要しない待機的手術の場合には、自己血輸血の適応を積極的に検討することが推奨されている。特に、主治医の判断に基づき行われる貯血式(手術が予定されている患者からあらかじめ手術前に血液を採取しておく方法)の自己血輸血について製剤化(分離凍結、解凍、洗浄など)及び保管について専門的技術をもつ血液センターの協力が求められている。

現在、日本赤十字社においては、医療機関からの要請に応じて可能な範囲で自己血輸血について協力することとしている。

18.2 血漿分画事業

日本赤十字社では、血液製剤の献血による国内自給という目標を達成するため、1983年(昭和58年)6月に北海道千歳市に設置した血漿分画センターにおいて、乾燥濃縮人血液凝固第VIII因子製剤を始めとする各種血漿分画製剤の製造・供給を行ってきた。2012年(平成24年)10月からは、日本赤十字社の血漿分画事業と株式会社ベネシスの事業を統合して設立された一般社団法人日本血液製剤機構(JB)がこの事業を引き継いでいる。

なお、事業引き継ぎ後も日本血液製剤機構千歳工場(元、日本赤十字社血漿分画センター)において製造された血漿分画製剤の医療機関への供給並びに医薬情報担当者を通じた適正使用の推進及び国内自給推進に向けた国内献血由来製剤の普及活動について日本血液製剤機構からの委託を受けて続けてきたが、2015年(平成27年)3月31日を以て受託契約を終了した。

現在、日本赤十字社は、国の血漿分画製剤用原料血漿の確保計画に基づき、原料となる血漿を確保し、国内にある3つの血漿分画製剤製造業者に送付しており、それらの製造業者で血液凝固因子製剤、アルブミン製剤及びグロブリン製剤等が製造されている。

19. International Cooperation Program

Blood services are closely related to each country's particular historical background, culture, and medical services, and each country faces its own challenges. However, there is a common awareness that efforts are constantly being made by each country towards ensuring the safe supply of blood. In this context, the Japanese Red Cross Society (JRCS) has engaged in international activities in order to contribute to improving blood services and strengthening collaborative relationships with various countries. Now JRCS works with countries mainly in the Asia and Pacific regions. For example, JRCS has organized a Blood Service Training Course, International Symposia, Bilateral Support, and so forth. Moreover, JRCS has joined the Global Advisory Panel on Corporate Governance and Risk Management of Blood Services in Red Cross and Red Crescent Societies (GAP), and Asian Pacific Blood Network (APBN) to cooperate in the exchange of information with participating countries.

19.1 Blood Service Training Course

JRCS began receiving blood service trainees from sister Red Cross and Red Crescent societies mainly in the Asia and Pacific regions in 1978 as international cooperation. By 2016, 418 individuals from 22 countries / regions had studied in Japan. Some executive staff of blood services in each society in the Asian region have trained in Japan on this scheme, which has been ongoing for 39 years. The scheme has become more than just a training method, it serves to improve blood services in each country and form a regional network in the above regions.

19. 血液事業分野における国際協力事業

血液事業はその国の歴史的背景、文化、医療制度などと密接に関係しており、国によって様々な問題を抱えているが、各国が常に「安全な血液の確保」を目標として、血液事業の発展のために努力し続けている点は世界共通である。日本赤十字社は、各国の血液事業の着実な発展と協力関係の強化に寄与することを目的として、現在、主にアジア・太平洋地域を対象として、研修生の受入れや国際シンポジウムの開催、二国間支援など様々な国際活動を展開している。また、赤十字・赤新月社の血液事業にかかるコーポレイト・ガバナンス及び危機管理に関する国際諮問協会(GAP)やアジア太平洋血液ネットワーク(APBN)へ参加し、参加国間の情報共有に協力している。

19.1海外血液事業研修生の受入れ

日本赤十字社は 1978 年(昭和 53 年)から主にアジア・太平洋地域の姉妹赤十字・赤新月社を対象に血液事業研修生の受入れを開始した。2016 年(平成 28 年)までに 22 カ国・地域から 418 名に対して研修を実施し、日本の血液事業の技術や知識を共有してきた。アジア地域の血液事業を担う幹部職員の中には、かつて日本で研修を受けた職員も多く、39 年間継続されてきた本研修プログラムは各国の血液事業の発展と同地域のネットワークの形成に役立っている。

Observation of preparation of blood products for transfusion

Individual Training

19.2 The Red Cross and Red Crescent Symposium on Blood Programs in the Asian Region

The blood services of each Asian country share common concerns including securing safe blood and conquering HIV/AIDS, hepatitis and other transfusion transmitted diseases. With these common concerns and in response to calls from the International Red Cross for the further strengthening of cooperative ties within the region, JRCS and the Thai Red Cross Society, under the auspices of the International Federation of Red Cross and Red Crescent Societies and the International Society of Blood Transfusion (ISBT), have held symposia in Bangkok, Thailand, and in Tokyo, Japan, once every three years from 1995 in principle. In October 2017, the 8th symposium entitled "Stable Supply of Safety Blood" will be held in Bangkok, Thailand.

These symposia focus on technical aspects and the representatives of the blood services in each country share their experiences by exchanging information. In 2014, ISBT granted ISBT award to JRCS and the Thai Red Cross Society, which have contributed significantly to transfusion medicine and science, mainly in educational aspects in the Asia region.

19.2 アジア地域赤十字・赤新月血液事業シンポジウムの開催

安全な血液の確保やエイズ、肝炎、その他輸血感染症の克服という、アジア各国の血液事業における共通の課題に対して、アジア地域内における協力体制を一層強化し、各国の血液事業の着実な発展に寄与することを目的として、日本赤十字社とタイ赤十字社は、国際赤十字・赤新月社連盟と国際輸血学会の後援を得て、1995年(平成7年)から3年に1回を原則としてタイ及び日本でシンポジウムを開催してきた。2017年(平成29年)10月にも「安全な血液の安定供給」をテーマに第8回シンポジウムをタイで開催する予定である。

シンポジウムでは、特に技術的側面に焦点をあてながら、血液事業に関わる各国の代表者が情報の交換を通して、各国の経験を分かち合っている。2014年(平成26年)には、シンポジウムが長きにわたってアジア地域の輸血医療や技術、特に教育的側面で貢献したと認められ、国際輸血学会から日本赤十字社とタイ赤十字社に対して国際輸血学会賞が贈られた。

The 7th Symposium on Blood Programs in the Asian Region

19.3 Support for the Lao Red Cross Blood Program

In 1991, the Laotian Health Ministry consigned the administration of the blood center in the capital city, Vientiane, to the Lao Red Cross. Initially, the people of the nation did not understand the concept of donating blood. When blood was needed, the patient's family or acquaintances would try to provide it. Moreover, safety-related blood examinations before transfusions were unsatisfactory.

Given these circumstances, in response to a request from the Lao Red Cross for help with blood services, JRCS carried out assessments and consultations and based on agreement by three parties, namely the International

19.3 ラオス赤十字血液事業支援

1991年(平成3年)、ラオス保健省が首都ビエンチャン市内の血液センターの運営をラオス赤十字に委託した当初、国民の間には献血という思想はほとんどなかった。また、輸血前検査についても、不十分な状態であった。

こうした中、ラオス赤十字からの援助要請に基づき、1995年(平成7年)から2003年(平成15年)まで国際赤十字・赤新月社連盟、ラオス赤十字、日本赤十字社の三者協定に基づきラオス赤十字血液事業支援を行った。新しい血液センターの建設(ビエンチャン)や、資機材・検査試薬等の提供などの資金的援助をはじめ、日本赤十字社として

Federation of Red Cross and Red Crescent Societies, the Lao Red Cross and JRCS, Japanese assistance to the Lao Red Cross Blood Services had been conducted from 1995 to 2003. Currently, financial assistance is provided for the construction of a new blood center (Vientiane), devices, equipment and testing reagents. Also, as the first such assistance effort by JRCS, a number of middlemanagement personnel from blood centers, a total of 11 individuals, were involved in technical cooperation while residing in Vientiane for six months to a year. For the outcome of this support with respect to the Lao Blood Services system, it began with the promulgation of a National Blood Policy in 1996. Next was the inauguration of a National Blood Transfusion Committee in 1998. Rh blood group inventories, cross-matching tests and Hepatitis C tests were introduced and the accuracy of laboratory technology increased. For donor recruitment in Vientiane, the ratio of voluntary non-remunerated blood donation had been almost nonexistent in 1995, but by 2003 the ratio had reached to 100 percent. A cost recovery system, which charges part of the cost as blood prices to be paid by transfusion recipients, was adopted to secure funds for the services. Each field in blood services is steadily developing.

Also, in 2012, the Lao Red Cross and JRCS concluded a comprehensive agreement on a six-year program. Under this program, JRCS has started to provide support to strengthen the quality assurance function and the operational management function of the Lao Red Cross. JRCS sent technical staff periodically to Lao to develop standard operating procedures (SOP), conduct educational training and provide advice for the establishment of an inspection system to operate their services in accordance with SOP throughout the country. Also, JRCS supported the construction of the structure of administration and operation with a central focus on the National Blood Transfusion Center (NBTC), and delivered lectures to health personnel in medical institutions for diffusing blood component transfusion. As a result, NBTC came to be able to set and perform the measure for strengthening quality assurance throughout the country. Although JRCS decided to stop the support in Fiscal 2016 we hope that the Lao Red Cross will keep on evolving and develop a blood program.

は初めての試みとして、のべ11名にのぼる各地の血液センターの中堅職員が6カ月から1年にわたって現地に滞在しながらの技術協力が展開された。これらの支援の成果として、1996年(平成8年)に国家血液事業政策法が公布されたのをはじめ、1998年(平成10年)には国家輸血委員会が発足した。また、Rh型、交差適合試験、C型肝炎検査等が導入され、検査技術が向上した。ビエンチャンでは、輸血用血液製剤に占める献血の割合が1995年(平成7年)にはほとんど皆無だったものが、2003年(平成15年)にはほとんど皆無だったものが、2003年(平成15年)には100%に到達した。事業資金確保のため経費の一部を血液代金として徴収する制度(コストリカバリーシステム)の導入を実施するなど、血液事業の各分野で着実な発展を遂げている。

また、2012年(平成24年)、ラオス赤十字と日本赤十字社は6カ年計画の包括協定書を締結し、品質保証機能及び運営管理機能強化の支援を開始した。日本赤十字社から技術系職員を定期的に派遣し、標準作業手順書(SOP)作成、ラオス全土にわたるSOP順守のための教育訓練や、チェック体制確立のための助言を行った。また、中央血液センターを中心としたラオス全土の血液センターの管理・運営体制づくりや、成分輸血普及のための病院関係者への講演等も実施した。その成果として、中央血液センターが自らラオス全土にわたる品質保証強化のための方策を考え実行できるようになった。そして、平成28年度をもって本支援は終了したが、ラオス赤十字血液事業の今後の益々の発展が期待される。

Staff of the Lao Red Cross being trained by staff of the Japanese Red Cross Society

20. Finance of the Blood Services

20.1 Financial Organization

The Japanese Red Cross Society (JRCS) has a General Account and Special Accounts to manage the finance for the respective activities separately.

The General Account is mainly funded by annual membership fees paid by JRCS members and contributions from the public. With these financial resources, JRCS implements various activities, including international activities, dissemination of workshops on first-aid treatment, etc., fostering of the Junior Red Cross, and promotion of Red Cross volunteering activities.

The Special Accounts consist of the Special Account for Blood Services, the Special Account for Medical Institutions, and the Special Account for Social Welfare Facilities, under which blood centers, medical institutions, and social welfare facilities are managed, respectively.

The Special Account for Blood Services is used for managing the funds of the Blood Service Headquarters, seven block blood centers, and the prefectural blood centers. The primary sources of funds are proceeds from the supply of blood products for transfusion to medical institutions, based on the standard prices of medicines.

JRCS also receives some subsidies and trust money from the national government and other entities for facility construction and commissioned activities.

In Fiscal 2012, JRCS shifted the management system for blood services from a system based on prefectural blood centers to that based on wide-area blocks, in order to ensure increased safety and stable supply of blood products.

Accordingly, it also revised its accounting system from a system based on prefectural blood centers to that based on blocks. By managing the funds held by all entities engaged in the blood services in a centralized manner at the Blood Service Headquarters, JRCS makes efforts to eliminate management gaps between blood centers, make effective investments in materials and equipment, and make optimal use of the funds held.

20. 血液事業の財政

20.1財政の仕組み

日本赤十字社においては、一般会計のほか特別会計を設けて、各事業活動の財政を区分して経理している。

一般会計は、社員から納入される社費と寄付金を合わせた 社資を主な財源としており、これらの財源をもとに、災害救 護をはじめ国際活動、救急法等の講習普及、青少年赤十字の 育成、赤十字ボランティア活動の促進等多岐にわたる事業を 実施している。

特別会計には、血液事業特別会計、医療施設特別会計、社会福祉施設特別会計等があり、それぞれ血液センターの運営、 医療施設の運営、社会福祉施設の運営を行っている。

血液事業特別会計は、血液事業本部、全国7ヵ所に設置しているブロック血液センター及び都道府県血液センターの経理をとりまとめており、主な財源は薬価(薬価基準)に基づく輸血用血液製剤の医療機関への供給収益である。

また、施設整備や受託関連事業においては、一部国などからの補助金・委託金を受けている。

2012 年度(平成 24 年度)から血液事業は、さらなる血液製剤の安全性の向上と安定的な供給を確保するため、これまで各都道府県にあった血液センター単位での運営から、広域的なブロックを単位とする運営体制へ変更した。

そのため、会計単位も各都道府県の血液センター単位から ブロック単位に改め、血液事業全体の保有資金を血液事業本 部で一元管理することで、血液センターの経営格差の解消、 資機材整備への効果的な資金投下、保有資金の有効活用に繋 げている。

20.2 Blood Products and Their Prices (Standard Prices of Medicines)

At present, the entire supply of blood for transfusion in Japan is secured through blood donations at prefectural blood centers nationwide. The donated blood is tested and processed at block blood centers and distributed to medical institutions at standard prices set by the national government.

As with other medical and pharmaceutical products, blood products for transfusion are covered by the national health insurance system. Prices of blood products are calculated by the national government, based on the costs involved in the process, from blood collection to distribution, and are officially posted. Medical institutions that use the blood products for transfusion are then reimbursed with a sum equivalent to the standard price for the blood and a transfusion procedure fee, as compensation for medical services by the health insurance system

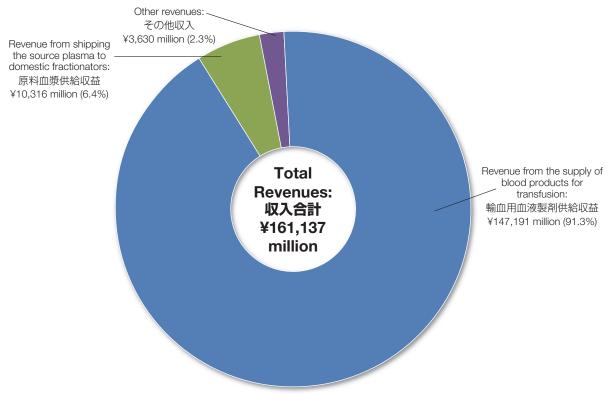
In contrast, the preparation and distribution systems for plasma derivatives are slightly different. All blood products for transfusion are produced at block blood centers and are distributed by blood centers to medical institutions. However, in the case of plasma derivatives, blood centers first distribute the source plasma to private manufacturers, then plasma derivatives are manufactured by them, and private-sector marketing authorization holders distribute them in the same manner as drug importers. Therefore, plasma derivatives are often distributed at discount prices, just like general medical and pharmaceutical products.

JRCS ended the supply of plasma derivatives at the end of March 2015 (FY 2014).

20.2 血液製剤と薬価(薬価基準)

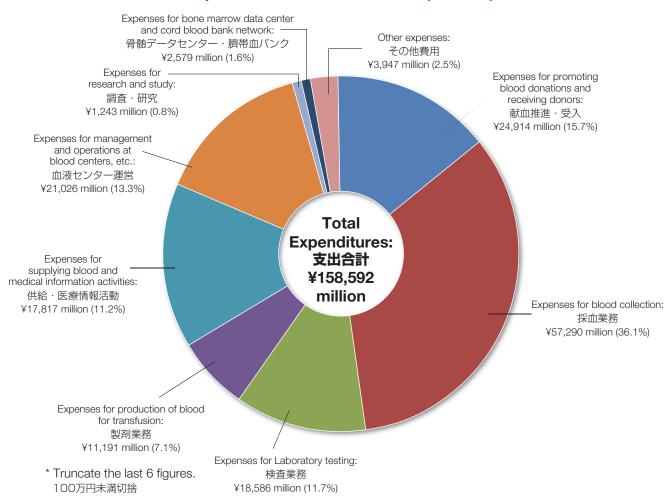
現在、国内で必要とされている輸血用血液は、全てを各都 道府県にある血液センターで献血者を受入れ、ブロック血液 センターで検査、製剤化し、医療機関へ国が定めた薬価で供 給している。

輸血用血液製剤は、他の医薬品と同様に国による健康保険の給付対象となっており、その薬価は採血から供給までの必要経費を基準に、国で算定、告示されている。輸血用血液製剤を使用した医療機関には、健康保険制度から診療報酬として、輸血手技料と薬価相当額が支払われる。


一方、血漿分画製剤においては、製剤及び流通の仕組みが多少異なっている。輸血用血液製剤については、全てブロック血液センターで製造し、血液センターから医療機関へ供給される。しかし、血漿分画製剤は、その製造に必要な原料血漿を血液センターから民間製造業者へ配分し、製造されており、民間販売業者が輸入販売業者同様に供給している。そのため、市場競争の下、一般の医薬品と同様に値引きされて供給される場合が多い。

なお、日本赤十字社による血漿分画製剤の販売は2014年度(平成26年度)3月末をもって終了している。

Flow of Money in Blood Services



Revenues in Blood Services (FY 2016)

* Truncate the last 6 figures. 100万円未満切捨

Expenditures in Blood Services (FY 2016)

Authorized Prices of Blood Products

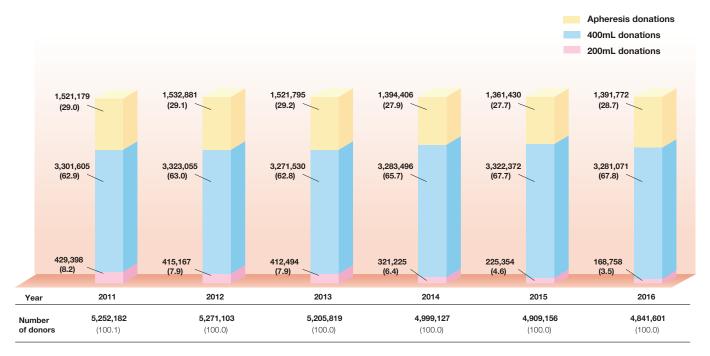
As of April 2017

	Trade name	Composition	Price (yer				
Whole Blood	Whole Blood, Leukocytes Reduced, NISSEKI	Derived from 200mL donation Derived from 400mL donation	8,16 16,32				
WHOLE BIOOD	Irradiated Whole Blood, Leukocytes Reduced, NISSEKI	Derived from 200mL donation Derived from 400mL donation	8,88 17,75				
	Red blood cells						
	Red Blood Cells, Leukocytes Reduced, NISSEKI	Derived from 200mL donation Derived from 400mL donation	8,40 16,80				
	Irradiated Red Blood Cells, Leukocytes Reduced, NISSEKI	Derived from 200mL donation Derived from 400mL donation	8,86 17,72				
	Washed Red Cells, Leukocytes Reduced, NISSEKI	Derived from 200mL donation Derived from 400mL donation	9,47 18,94				
	Irradiated Washed Red Cells, Leukocytes Reduced, NISSEKI	Derived from 200mL donation Derived from 400mL donation	10,03 20,07				
	Frozen Thawed Red Cells, Leukocytes Reduced, NISSEKI	Derived from 200mL donation Derived from 400mL donation	15,63 31,27				
	Irradiated Frozen Thawed Red Cells, Leukocytes Reduced, NISSEKI	Derived from 200mL donation Derived from 400mL donation	16,04 32,08				
	Blood for Exchange Transfusion, Leukocytes Reduced,	RBC derived from 200 mL of whole blood plus approx. 60 mL of plasma/bag	13,49				
	NISSEKI*1	RBC derived from 400 mL of whole blood plus approx. 120 mL of plasma/bag	26,99				
	Irradiated Blood for Exchange Transfusion, Leukocytes	RBC derived from 200 mL of whole blood plus approx. 60 mL of plasma/bag	14,06				
	Reduced, NISSEKI*1	RBC derived from 400 mL of whole blood plus approx. 120 mL of plasma/bag	28,12				
	Plasma						
Blood Components	Fresh Frozen Plasma, Leukocytes Reduced, NISSEKI 120	Derived from 200mL donation	8,95				
	Fresh Frozen Plasma, Leukocytes Reduced, NISSEKI 240	Derived from 400mL donation	17,91				
	Fresh Frozen Plasma, Leukocytes Reduced, NISSEKI 480 *2	480mL/bag	23,61				
	Platelets						
	Platelet Concentrate, Leukocytes Reduced, NISSEKI *2	≥0.2×10 ¹¹ PLTs/bag ≥0.4×10 ¹¹ PLTs/bag ≥1.0×10 ¹¹ PLTs/bag ≥2.0×10 ¹¹ PLTs/bag ≥3.0×10 ¹¹ PLTs/bag ≥4.0×10 ¹¹ PLTs/bag	7,80 15,60 39,86 79,40 119,09 158,78				
	Irradiated Platelet Concentrate, Leukocytes Reduced, NISSEKI *2	≥0.2×10 ¹¹ PLTs/bag ≥0.4×10 ¹¹ PLTs/bag ≥1.0×10 ¹¹ PLTs/bag ≥2.0×10 ¹¹ PLTs/bag ≥3.0×10 ¹¹ PLTs/bag ≥4.0×10 ¹¹ PLTs/bag	7,87 15,74 40,10 79,87 119,80 159,73				
	Irradiated Washed Platelet Concentrate, Leukocytes Reduced, NISSEKI *2	≥2.0×10 ¹¹ PLTs/bag	79,87				
	Platelet Concentrate HLA, Leukocytes Reduced, NISSEKI *2	≥2.0×10 ¹¹ PLTs/bag ≥3.0×10 ¹¹ PLTs/bag ≥4.0×10 ¹¹ PLTs/bag	95,28 142,92 190,56				
	Irradiated Platelet Concentrate HLA, Leukocytes Reduced, NISSEKI *2	≥2.0×10 ¹¹ PLTs/bag ≥3.0×10 ¹¹ PLTs/bag ≥4.0×10 ¹¹ PLTs/bag	96,02 143,85 191,49				
	Irradiated Washed Platelet Concentrate HLA, Leukocytes Reduced, NISSEKI *2	≧2.0×10¹¹ PLTs/bag	96,02				

2017年(平成29年)4月現在

血液製剤の薬価

血バスを用うシ来画	昕 <u></u>	1912、出法	杏仁 (田)				
	販売名	規格・単位	薬価(円)				
全血製剤	人全血液 - LR「日赤」	血液 200mL に由来する血液量 1 袋 血液 400mL に由来する血液量 1 袋	8,160 16,320				
王皿袋削	照射人全血液 - LR「日赤」	血液 200mL に由来する血液量 1 袋 血液 400mL に由来する血液量 1 袋	8,881 17,757				
	赤血球製剤						
	+ + + + + + + + + + + + + + + + + + + +	血液 200mL に由来する赤血球 1 袋	8,402				
	赤血球液 - LR「日赤」 	血液 400mL に由来する赤血球 1 袋	16,805				
	照射赤血球液 - LR「日赤」	血液 200mL に由来する赤血球 1 袋 血液 400mL に由来する赤血球 1 袋	8,864 17,726				
	洗浄赤血球液 - LR「日赤」	血液 200mL に由来する赤血球 1 袋 血液 400mL に由来する赤血球 1 袋	9,470 18,940				
	照射洗浄赤血球液 - LR「日赤」	血液 200mL に由来する赤血球 1 袋 血液 400mL に由来する赤血球 1 袋	10,036 20,072				
	解凍赤血球液 - LR「日赤」	血液 200mL に由来する赤血球 1 袋 血液 400mL に由来する赤血球 1 袋	15,636 31,273				
	照射解凍赤血球液 - LR「日赤」	血液 200mL に由来する赤血球 1 袋 血液 400mL に由来する赤血球 1 袋	16,043 32,085				
	合成血液 - LR「日赤」* ¹	血液 200mL に由来する赤血球に血漿約60 mL を混和した血液1袋 血液 400mL に由来する赤血球に血漿約120mL を混和した血液1袋	13,499 26,997				
		血液 200mL に由来する赤血球に血漿約 60 mL を混和した血液 1袋	14,065				
	照射合成血液 - LR「日赤」* 	血液 400mL に由来する赤血球に血漿約 120mL を混和した血液1袋	28,128				
血液成分製剤	血漿製剤						
	新鮮凍結血漿 – LR「日赤」120	血液 200mL 相当に由来する血漿 1 袋	8,955				
	新鮮凍結血漿 – LR「日赤」240	血液 400mL 相当に由来する血漿 1 袋	17,912				
	新鮮凍結血漿 - LR「日赤」480 *2	480mL1袋	23,617				
	血小板製剤						
	濃厚血小板 - LR「日赤」*2	1 単位 約 20mL1袋 2 単位 約 40mL1袋 5 単位 約 100mL1袋 10 単位 約 200mL1袋 15 単位 約 250mL1袋 20 単位 約 250mL1袋	7,80° 15,60° 39,860° 79,402° 119,09°				
	照射濃厚血小板 - LR「日赤」* ²	1 単位 約 20mL1袋 2 単位 約 40mL1袋 5 単位 約 100mL1袋 10 単位 約 200mL1袋 15 単位 約 250mL1袋 20 単位 約 250mL1袋	7,879 15,749 40,100 79,879 119,800 159,733				
	照射洗浄血小板-LR「日赤」* ²	10 単位 約 200mL 1 袋	79,875				
	濃厚血小板 HLA - LR「日赤」*2	10 単位 約 200mL1袋 15 単位 約 250mL1袋 20 単位 約 250mL1袋	95,283 142,925 190,566				
	照射濃厚血小板 HLA - LR「日赤」*2	10 単位 約 200mL1袋 15 単位 約 250mL1袋 20 単位 約 250mL1袋	96,025 143,854 191,496				
	照射洗浄血小板HLA-LR「日赤」*2	10 単位 約 200mL1袋	96,025				


注釈 *1 赤血球はO型、血漿はAB型の血液を混和する。 *2 成分採血由来製剤

Appendixes

付録

Number of Donors (%)

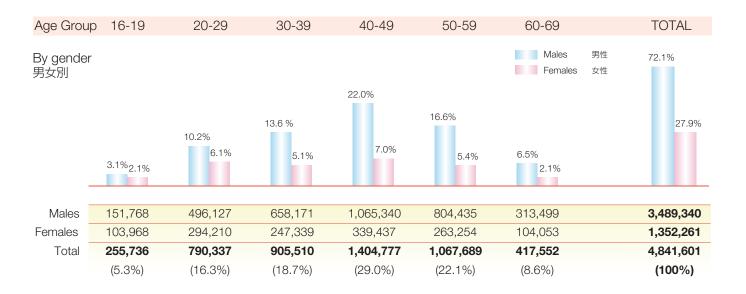
献血者数(%)

^{*} Percentages may not add up to 100% because of rounding.

Total Blood Donations in Liters

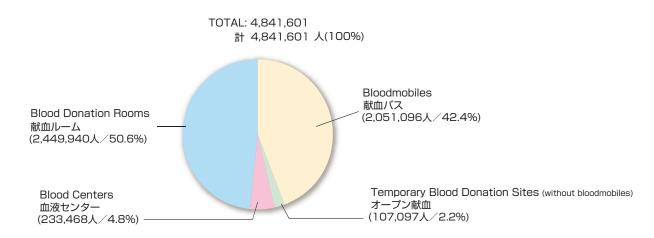
献血量(推計值)

Year	2011	2012	2013	2014	2015	2016
200mL donations	85,879.60	83,033.40	82,498.80	64,245.00	45,070.80	33,751.60
400mL donations	1,320,642.00	1,329,222.00	1,308,612.00	1,313,398.40	1,328,948.80	1,312,428.40
Apheresis donations	615,879.85	631,989.23	630,287.94	574,536.72	562,896.68	569,707.68
Total	2,022,401.45	2,044,244.63	2,021,398.74	1,952,180.12	1,936,916.28	1,915,887.68


^{*} Round of fractions

^{*「}構成比」は端数処理しているため、合計が必ずしも 100% にはならない。

^{*} 端数処理


2016 Donations by Age Group (in percentage)

2016年年齡別献血者数(構成比)

2016 Donations by Site (Number of donors/in percentage)

2016年 施設別献血者数 (人数/構成比)

- * Percentages may not add up to 100% because of rounding.
- *「構成比」は端数処理しているため、合計が必ずしも 100% にはならない。

Blood Units that have not passed the required tests

検査不合格本数の推移

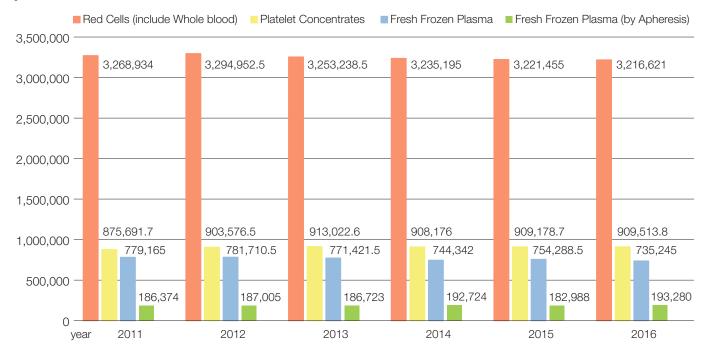
	Number of	Total E	Total Blood units that have not passed the required tests 検査不合格本数							
Year 年	donors 献血者数		Syphilis antibodies 梅毒抗体	HBsAg HBs抗原	Anti-HBc antibodies HBc抗体	Anti-HCV antibodies HCV抗体	ALT	Irregular antibodies 不規則抗体	Others その他	
	5,252,182	173,953	6,043	3,230	10,193	2,031	134,059	6,549	15,232	
2011	, ,	3.3	0.1	0.1	0.2	0.1	2.6	0.1	0.3	
0010	5,271,103	172,348	5,605	3,322	24,671	2,140	119,797	5,424	14,950	
2012		3.3	0.1	0.1	0.5	0.0	2.3	0.1	0.3	
2013	5,205,819	167,208	4,933	2,904	27,987	1,739	115,230	4,213	13,646	
2013		3.2	0.1	0.1	0.5	0.0	2.2	0.1	0.3	
2014	4,999,127	153,113	4,662	2,163	21,123	1,357	109,218	4,010	14,150	
2014		3.1	0.1	0.0	0.4	0.0	2.2	0.1	0.3	
2015	4,909,156	154,802	4,553	2,561	18,474	1,347	113,135	3,456	15,566	
2013		3.1	0.1	0.1	0.4	0.0	2.3	0.1	0.3	
2016	4,841,601	91,861	4,480	1,392	15,443	1,059	54,809	3,404	14,225	
2010		1.9	0.1	0.0	0.3	0.0	1.1	0.1	0.3	

Upper line: number of units

Lower line: ratio to number of donors

(1) Reasons why blood did not pass the tests may overlap each other.

(2) "Others" include HIV and HTLV-I antibodies.


上段:本数

下段:献血者数に対する構成比(%)

- (1) 献血不合格数の理由は重複する場合がある。
- (2) HIV抗体、HTLV-I 抗体は、「その他」に含む。

Number of distribution of blood products for transfusion

輸血用血液製剤の供給本数

赤血球製剤(全血を含む)と血漿製剤は400mL由来製剤を1、血小板製剤は10単位を1として換算。 成分献血由来の血漿製剤は480mL由来製剤(2013年9月3日以前は450mL)を1として換算。

Red Cells (include Whole blood) and Fresh Frozen Plasma are calculated as 1 unit equal to 400mL donation.

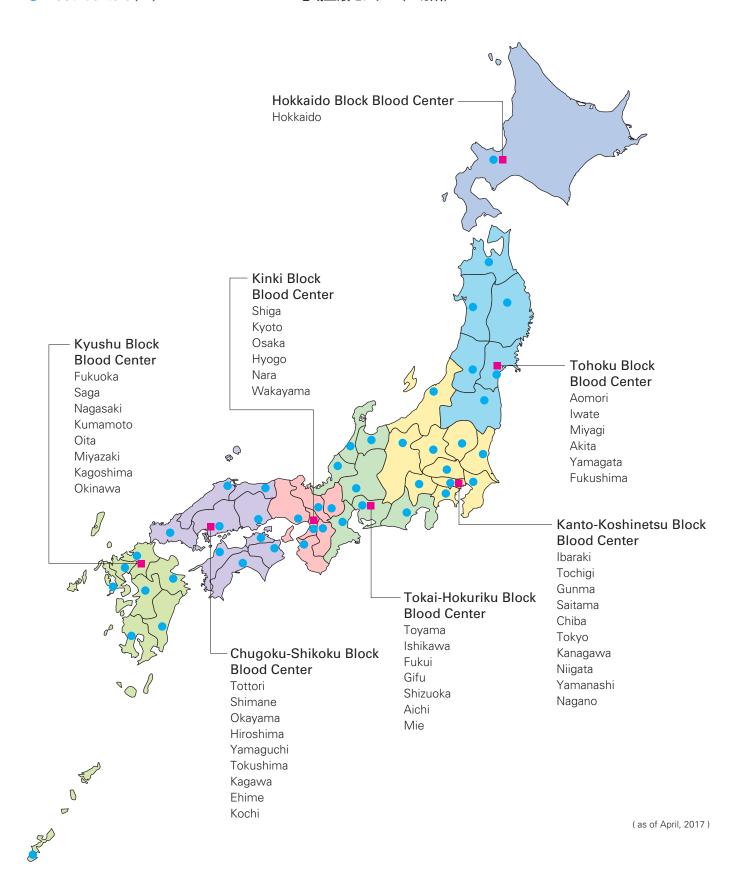
Platelet Concentrates is calculated as 1 unit equal to \geq 2.0×10¹¹ PLTs/bag.

Fresh Frozen Plasma by Apheresis is calculated as 1 unit equal to 480mL donation (before September 3rd in 2013 it was 450mL donation)

Facilities and Personnel

血液事業の体制

Facilities 施設	Block Blood Center	ブロック血液センター	7
	Blood Centers	 地域血液センター	47
	Branches (including 129 donation rooms)	事業所、出張所(内、献血ルーム129 as of December 31, 2016 2016年12月	
Motor Vehicles 車両(台)	Bloodmobiles	移動採血車	284
	Examination cars		104
	Equipment-delivery vehicles		142
	PR vehicles		229
	Donor-transportation vehicles	献血者送迎車	105
	Blood-delivery vehicles	献血運搬車	811
	Others		253
	TOTAL	計	1,928
	(as of December 31, 2016 2016年12月31日現在)		
Apheresis Equipment 成分採血装置(台)	CCS		888
	TRIMA		371
	TERUSYS-S		396
	TOTAL	計	1,655
		(as of April 1, 2017 2017年4月1日現在)	
Staff * 職員 (人) *	Physicians	医師	95
	Pharmacists	 薬剤師	325
	Laboratory technicians		653
	Nurses		2,075
	Administrative staff		3,107
	Others	その他	150
	TOTAL	計	6,405
		(as of October 1, 2016 2016年10月1日現在)	


^{* :} Excluding staff at the headquarters.

^{*:}本社職員の人数は除く。

Blood Centers in Japan 全国の血液センター

- Block Blood Center (7)
- Blood Centers (47)

ブロック血液センター (7ヵ所) 地域血液センター (47ヵ所)

Blood Services 2017 -Japanese Red Cross Society-

Published by Blood Service Headquarters, The Japanese Red Cross Society ©2017 Japanese Red Cross Society 1-1-3 Shiba-Daimon Minato-ku, Tokyo 105-8521 JAPAN Tel:+81-(3)-3437-7540

Printed in Japan, August 2017

人間を救うのは、人間だ。Our world. Your move.

