Effectiveness of the Introduction of Safety Measures for Blood Components for Transfusion and Risk of HBV, HCV, and HIV infection due to Transfusion

As measures to secure the safety of blood components for transfusion, the Japanese Red Cross Society reinforced the criteria of HBc antibody tests in August 2012, and introduced individual nucleic acid amplification test of HBV, HCV, and HIV infections due to transfusion (hereinafter referred to as “ID-NAT”) in August 2014. We hereby report the effectiveness of the introduction of these safety measures against the above-mentioned infections in the current state as approximately three years have passed since the introduction of ID-NAT.

The remaining risk for the above-mentioned infections after the introduction of ID-NAT was calculated as the “theoretical residual risk” according to the WHO guideline (2016). We calculated the “estimated annual number of cases of infection after transfusion” of HBV, HCV, and HIV to provide an idea of the “risks associated with transfusion” to be explained to patients when transfusion is performed based on this theoretical residual risk.

Effectiveness of the introduction of safety measures and the number of cases of HBV, HCV, and HIV infections (2008-2017)

Changes in the number of cases of infections (HBV, HCV, HIV) after transfusion by the year of blood collection

- Concerning cases of HBV infection due to transfusion, cases due to previous infection have largely decreased after reinforcing the criteria of HBc antibody tests. In addition, cases of new infection (in the window period) have decreased to 2 cases for 3 years (0.7 cases annually) after the introduction of ID-NAT.
- One case each of HCV infection and HIV infection due to transfusion occurred before the introduction of ID-NAT, and both of the cases were due to blood components of ID-NAT positive (*1). No infection due to ID-NAT negative has been observed so far.

*1 ID-NAT using the stored samples of the causative components
Theoretical residual risk and estimated annual number of cases of infection after transfusion

- Based on the number of donations only with ID-NAT positive (serological test negative) from 2015 to 2017, the number of donations at a level below the detection limit by ID-NAT was calculated as the “theoretical residual risk.”

- The “estimated annual number of cases of infection after transfusion” was calculated assuming that the number of blood components for transfusion supplied to medical institutions in one year is approximately 5 million units.

<table>
<thead>
<tr>
<th></th>
<th>Only ID-NAT positive</th>
<th>Theoretical residual risk</th>
<th>Estimated annual number of the cases of infection after transfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBV</td>
<td>Approx. 44 cases</td>
<td>One case per 740,000 donations</td>
<td>One case per 1,600,000 transfusions (annually 3.1)</td>
</tr>
<tr>
<td></td>
<td>(36-55 cases)</td>
<td>(annually 6.54)</td>
<td></td>
</tr>
<tr>
<td>HCV</td>
<td>Approx. 4 cases</td>
<td>One case per 23,000,000 donations</td>
<td>Difficult to estimate (theoretical residual risk is small)</td>
</tr>
<tr>
<td></td>
<td>(3-5 cases)</td>
<td>(annually 0.21)</td>
<td></td>
</tr>
<tr>
<td>HIV</td>
<td>Approx. 1 case</td>
<td>One case per 84,000,000 donations</td>
<td>Difficult to estimate (theoretical residual risk is small)</td>
</tr>
<tr>
<td></td>
<td>(0-1 case)</td>
<td>(annually 0.06)</td>
<td></td>
</tr>
</tbody>
</table>

2 Theoretical residual risk is represented as the maximum value (“mean + 3SD” for 3 years).

3 “Estimated annual number of the cases of infection after transfusion” was calculated considering the risk of infection according to the difference in the state of infection of the donor in addition to the theoretical residual risk.

[Calculation of theoretical residual risk]

(i) Calculation of the occurrence rate (the number of donations only with ID-NAT positive per 100,000 donors)

The occurrence rate is calculated assuming that the number of blood components for transfusion supplied to medical institutions in one year is approximately 5 million units.

Occurrence rate = \[
\frac{\text{Number of donations only with ID-NAT positive for one year}}{\text{Annual number of donors (actual number of donors with multiple donations)}} \times 100,000
\]

(ii) Calculation of residual risk (number of donations per 1 million donations)

The residual risk is calculated as follows:

\[
\text{Residual risk} = \frac{\text{Occurrence rate (i)}}{100,000} \times \text{window period (yearly)} \times 1,000,000
\]

(iii) Calculation of the theoretical residual risk

The theoretical residual risk is calculated as follows:

\[
\text{Theoretical residual risk} = \frac{\text{Residual risk (ii)} \times \text{window period (yearly)} \times 1,000,000}{100,000}
\]

Safety measures for blood components for transfusion and changes in the incident rate of hepatitis after transfusion

In case any of adverse reactions and/or infections related to transfusion of blood components, please note the medical representatives of your local JRC blood center immediately. Please provide the residual products, the recipient samples, and any other related materials; it is helpful to investigate and/or identify the cause. For storage of residual products and the recipient samples, refer to the “Guidelines for lookback studies of blood products.”

Issued by:
Medical Information Division, Technical Department, Blood Service Headquarters, Japanese Red Cross Society 1-2-1 Shiba-Koen, Minato-ku, Tokyo 105-0011, Japan
* For more information, please contact the medical representatives of your local JRC blood center.

For blood products and transfusion information
Japanese Red Cross Society Haemovigilance Information English website
Japanese Red Cross Society Haemovigilance Information